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Abstract

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple li-
near regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed 
event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain 
the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the 
results is highlighted and then some special issues are discussed.
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Introduction

One of the previous topics in Lessons in biostatistics 
presented the calculation, usage and interpreta-
tion of odds ratio statistic and greatly demonstrat-
ed the simplicity of odds ratio in clinical practice 
(1). The example used then was from a fictional 
study where the effects of two drug treatments to 
Staphylococcus Aureus (SA) endocarditis were com-
pared. Original data are reproduced on Table 1.

Following (1), the odds ratio (OR) of death of pa-
tients using standard treatment can be calculated 
as (152 x 103) / (248 x 47) = 3.71, meaning that pa-
tients at standard treatment present a chance to 
die 3.71 times greater than patients under new 
treatment. To a more detailed information about 
basic OR interpretations, please see McHugh (1). 
However, a more complex problem can arise when, 
instead of the association between one explana-
tory variable and one response variable (e.g., type 
of treatment and death), we are interested in the 
joint relationship between two or more explana-
tory variables and the response variable. Let us 

suppose we are now interested in the relationship 
between age and death in the same group of SA 
endocarditis patients. Table 2 presents the fiction-
al new data. You ought to remember that those 
data are not real data and that the relationships 
described here are not meant to reflect any real as-
sociations.

Again, we can calculate an OR as (120 x 134 / 217 x 
49) = 1.51, meaning that the chance of an younger 
individual (between 30 and 45 years-old) death is 
about 1.5 times the chance of the death of an old-
er individual (between 46 and 60 years-old). Now, 
instead, we have two variables related to the event 
of interest (death) at individuals with SA endo-
carditis. But in the presence of more than one ex-
planatory variable, separately testing each inde-
pendent variable against the response variable in-
troduces bias into the research (2), Performing 
multiple tests on the same data inflates the alpha, 
thus increasing Type I error rates while missing 
possible confounding effects. So, how do we know 
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whether the treatment effect on endocarditis re-
sult is being masked by the effect of age? Let us 
take a look at the treatment effect as stratified by 
age (Table 3).

As table 3 illustrates, the impact of treatment is 
higher on younger individuals, because OR in the 
younger patients subgroup is higher than in the 
older patients subgroup. Therefore, it would be in-
correct to simply look at the treatment results 
without considering the impact of age. The sim-
plest way to solve this problem is to calculate some 
form of “weighted” OR (i.e., Mantel-Haenszel OR 
(3)), using Equation 1 below, where ni is the sample 
size of age class I, and a, b, c and d are the table 
cells, as presented by McHugh (1).
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It means that the weighted chance of death asso-
ciated with standard treatment is 3.74 times the 
chance of death of individuals taking new treat-
ment. However, as the number of explanatory vari-
ables increases, the complexity of these calcula-
tions can become nearly impossible to handle. Ad-
ditionally, Mantel-Haenszel OR, like the simple OR, 
admits only categorical explanatory variables. For 
instance, to use a continuous variable like age we 
need to set a breaking point to categorize (in our 
case, arbitrarily set at 45 years-old) and could not 
use the real age. Determining breaking points is 
not always easy! But there is a better approach: us-
ing logistic regression instead.

Definition

Logistic regression works very similar to linear re-
gression, but with a binomial response variable. 
The greatest advantage when compared to Man-
tel-Haenszel OR is the fact that you can use con-
tinuous explanatory variables and it is easier to 
handle more than two explanatory variables si-
multaneously. Although apparently trivial, this last 
characteristic is essential when we are interested 
in the impact of various explanatory variables on 
the response variable. If we look at multiple ex-
planatory variables independently, we ignore the 
covariance among variables and are subjected to 

Table 2. Results from fictional endocarditis treatment study by 
McHugh looking at age (1).

Table 1. Results from fictional endocarditis treatment study by 
McHugh (1).

Standard 
treatment

New 
treatment Totals

Died 152 17 169

Survived 248 103 351

Totals 400 120 520

Younger 
(30–45 yrs)

Older 
(46–60 yrs) Totals

Died 120 49 169

Survived 217 134 351

Totals 337 183 520

Older
(46-60 yrs)

Standard treatment New treatment Totals OR

Died 43 6 49

2.44Survived 100 34 134

Totals 143 40 183

Younger
(30-45 yrs)

Standard treatment New treatment Totals OR

Died 109 11 120

4.62Survived 148 69 217

Totals 257 80 337

Table 3. Effect of treatment on endocarditis stratified by age.
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confounding effects, as was demonstrated in the 
example above when the effect of treatment on 
death probability was partially hidden by the ef-
fect of age.

A logistic regression will model the chance of an 
outcome based on individual characteristics. Be-
cause chance is a ratio, what will be actually mod-
eled is the logarithm of the chance given by:

   
log π

1 – π
= β0 + β1x1 + β2x2 + ... βmxm( (  (2)

where π indicates the probability of an event (e.g., 
death in the previous example), and βi are the re-
gression coefficients associated with the reference 
group and the xi explanatory variables. At this 
point, an important concept must to be highlight-
ed. The reference group, represented by β0, is con-
stituted by those individuals presenting the refer-
ence level of each and every variable x1...m. To illus-
trate, considering our previous example, these are 
the individuals older aged that received standard 
treatment. Later, we will discuss how to set the ref-
erence level.

Logistic regression step-by-step

Let us apply a logistic regression to the example 
described before to see how it works and how to 
interpret the results. Let us build a logistic regres-
sion model to include all explanatory variables 
(age and treatment). This kind of model with all 
variables included is a called “full model” or a “sat-
urated model” and is the best starting option if 
you have a good sample size and small number of 
variables to include (issues about sample size, vari-
able inclusion and selection and others will be dis-
cussed in the next section. For now, we will keep it 
as simple as possible).

The result of our model can be seen below, at Ta-
ble 4.

Now all we have to do is to interpret this output. 
Beginning with the intercept term, which corre-
sponds to our β0. Taking the exponential of β0 we 
have the mean odds to death of individuals in the 
reference category. So, exp(β0) = exp(-2.121) = 0.12 
is the chance of death among those individuals 
that are older and received new treatment. A small 
difference in the interpretation of coefficients ap-
pears when we go to the next coefficients. Individ-
uals that also received new treatment but are 
younger have a mean chance of death exp(β1) = 
exp(0.454) = 1.58 times the chance of reference in-
dividuals. Similarly, older individuals that received 
standard treatment have a mean chance exp(β2) = 
exp(1.333) = 3.79 times the chance of reference in-
dividuals to die. But what if individuals are young-
er and received standard treatment? Then we have 
to calculate exp(β1+β2) = exp(1.787) = 5.97 times 
the mean chance of reference individuals.

This is the basics of logistic regression interpreta-
tion. However, some issues appear during the 
analysis and solutions are not always readily avail-
able. In the next section we will discuss how to 
deal with them.

Logistic regression pitfalls

Odds and probabilities

First it is imperative to understand that odds and 
probabilities, although sometimes used as synon-
ymous, are not the same. Probability is the ratio 
between the number of events favorable to some 
outcome and the total number of events. On the 
other hand, odds are the ratio between probabili-
ties: the probability of an event favorable to an 
outcome and the probability of an event against 

Term β estimate Standard error P value

Intercept (β0) -2.121 0.303 <0.001

Age: Younger (β1) 0.454 0.207 0.028

Treatment: Standard (β2) 1.333 0.283 <0.001

Table 4. Results from multivariate logistic regression model containing all explanatory variables (full model).
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the same outcome. Probability is constrained be-
tween zero and one and odds are constrained be-
tween zero and infinity. And odds ratio is the ratio 
between odds. The importance of this is that a 
large odds ratio (OR) can represent a small proba-
bility and vice-versa. Let us go back to our exam-
ple to make this point clear.

The reference group (older individuals receiving 
new treatment) showed a chance of death approx-
imately equal to 0.12. Using:

     1
chance

probability
chance

=
+  (3)

it can be shown that the mean probability of death 
of this group is 0.11. Knowing that the mean chance 
of death in the group of younger individuals that 
received new treatment is 1.58 greater than the 
mean chance of the reference group, the chance 
of death to this group can be estimated as 1.58 x 
0.12 = 0.19 or, using Equation 3 above, a probability 
of death equal to 0.16. Similarly, the mean chance 
of death of an older individual receiving standard 
treatment is 3.79 times the reference group, which 
means a chance of death equal to 3.79 x 0.12 = 0.45 
or a probability of death equals to 0.31. Finally, 
younger individuals receiving standard treatment 
have a chance of death equal to 5.97 x 0.11 = 0.72 
or a probability of death equal to 0.42.

Therefore, as demonstrated, a large OR only means 
that the chance of a particular group is much 
greater than that of the reference group. But if the 
chance of reference group is small, even a large OR 
can still indicate a small probability.

Continuous explanatory variables or variables 
with more than two levels

Now is time to think about what to do if explana-
tory variables are not binomial, as before. When an 
explanatory variable is multinomial, then we must 
build n-1 binary variables (called dummy variable) 
to it, where n indicates the number of levels of the 
variable. A dummy variable is just a variable that 
will assume value one if subject presents the spec-
ified category and zero otherwise. For instance, a 
variable named “satisfaction” that presents three 
levels (“Low”, “Medium” and “High”) needs to be 
represented by two dummy variables (x1 and x2) in 
the model. The individuals at reference level, let’s 
say “Low”, will present zeros in both dummy vari-
ables (Equation 4a), while individuals with “Medi-
um” satisfaction will have a one in x1 and a zero in 
x2 (Equation 4b). The opposite will occur with indi-
viduals with “High” satisfaction (Equation 4c). Usu-
ally, statistical software does it automatically and 
the reader does not have to worry about it.

 
(4)

While interpretation of outputs from multinomial 
explanatory variables is straightforward and fol-
lows the ones of binomial explanatory variables, 
the interpretation of continuous variables, on the 
other hand, is a bit more complex. The exp(β) of a 
continuous variable represents the increment of 
the chance of an event related to each unit incre-
ment on the explanatory variable. For instance, 
the variable “Age” in our previous example, if in-

stead of being binomial (older x younger) were 
continuous, would produce the following result 
(Table 5).

The first thing to point out is that the “Age2” coef-
ficient (Age here taken as a continuous variable) is 
now negative. It occurs because the older the indi-
vidual (in years) the smaller the chance of death. If 
we take exp(-0.294) = 0.75, it shows us that for 
each year of life the chance to die of SA endocardi-

log π
1 – π

= β0 + β1x1 + β2x2 = β10 + β20 = β0 ( ( (a)

log π
1 – π

= β0 + β1x1 + β2x2 = β11 + β20 = β0 + β1 ( ( (b)

log π
1 – π
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“High” →
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tis decreases by 25%. The intercept, now, repre-
sents individuals that received the new treatment 
and with “zero years-old”. Take extra care when in-
terpreting logistic regression results using contin-
uous explanatory variables.

Variables inclusion and selection

A major problem when building a logistic model is 
to select which variables to include. Researchers 
usually collect as many variables as possible in 
their research instrument, then put all of them into 
the model and try to find something “significant”. 
This approach increases the emergence of two sit-
uations. First, one or more variables are statistically 
“significant”, but the researcher has no theory to 
link the “significant” variable to the event of inter-
est modeled. Remember that you are working 
with samples and spurious results can occur. The 
second situation is that a model with more varia-
bles presents less statistical power. So, if there is an 
association between one explanatory variable and 
the occurrence of an event, researcher can miss 
this effect because saturated models (those that 
contains all possible explanatory variables) are not 
sensible enough to detect it. So the researcher 
must to be very cautious with the selection of vari-
ables to include into the model.

We can start a regression using either a full (satu-
rated) model, or a null (empty) model, which starts 
only with the intercept term. In the first case, vari-
ables need to be dropped one by one, preferably 
dropping the less significant one. This is the pre-
ferred strategy just because is easier to handle, 
while the second requires all candidate variables 
to be tested each step in a way to select the better 
choice to include. On the other hand, if too many 
variables are included at once in a full model, sig-

nificant variables could be dropped due to low 
statistical power, as mentioned above.

As a rule, if we have a large sample size, let’s say 
that we have at least ten individuals per variable, 
we can try to include all your explanatory variables 
in the full model. However, if we have a limited 
sample size in relation to the number of candidate 
variables, a pre-selection should be performed in-
stead. One way to do that is to test all variables 
previously, using models with just one explanatory 
variable at a time (univariate models) and after-
wards include in the multivariate model all varia-
bles that have shown a relaxed P-value (for in-
stance, P ≤ 0.25). There is no reason to worry about 
a rigorous p-value criterion at this stage, because 
this is just a pre-selection strategy and no infer-
ence will derive from this step. This relaxed P-value 
criterion will allow reducing the initial number of 
variables in the model reducing the risk of missing 
important variables (4,5).
There is some debate about the appropriate strat-
egy to variable selection (6) and the last is just an-
other one. It is easy and intuitive. More elaborated 
methods are available, but whatever the method, 
it is very important that researchers get aware of 
the procedure applied and not just press some 
buttons on software.

Reference group setup

There are some explanatory variables for which 
the reference level is almost automatically deter-
mined. For instance, to our response variable 
named “Result” for which the outcomes are “died” 
and “survived”, the reference level is almost always 
set to “survived”, since the interest is focused on 
variables associated with the outcome, death.

Term β estimate Standard error P value

Intercept (β0) 9.039 1.513 <0.001

Age 2 (β1) -0.294 0.041 <0.001

Treatment: Standard (β2) 2.229 0.297 <0.001

Table 5. Results from multivariate logistic regression model containing all explanatory variables (full model), using AGE as a 
continuous variable.
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On the other hand, some variables have no clear 
reference level, but present ordered levels and the 
reference level will be, usually, one of the end-
points or, less frequently, the central level. This is 
the case of variables assessed using Likert scales, a 
psychometric scale commonly involved in research 
that employs questionnaires (for instance, the de-
gree of satisfaction about some product scaled as 
“satisfied”, “nor satisfied, nor unsatisfied” or “un-
satisfied”). However, some variables have no or-
dered levels and no clear reference level. This can 
occur with geographic region. And then appears 
the question: what region should I use as refer-
ence?

The answer is that there is no answer… However, 
reference level selection can change the model es-
timation in some cases. It is important to remem-

ber that all results (and significant effects) present-
ed are relative to the reference level. To make this 
point clearer, let’s see an example. In a nationwide 
survey about the occurrence of diabetic ketoaci-
dosis, individual’s geographic region was found to 
be significantly related to the probability of dia-
betic ketoacidosis at the onset of diabetes (7). In 
this work, north/northeast region was set as refer-
ence and southeast region was the only one to be 
statistically different relative to the reference. The 
results, showing just the region variable, are below 
(Table 6).

If we otherwise use Middle-East as the reference 
level, the next result will emerge (again, only geo-
graphic region is shown) (Table 7).

Finally, if we use the southeast region as reference 
level, we obtain following results (Table 8).

Term β estimate Standard error OR P value

Intercept (β0) -1.92 0.19 - <0.001

Region: South (β1) -0.09 0.11 0.92 0.405

Region: Middle-West (β2) 0.18 0.16 1.19 0.267

Region: Southeast (β3) 0.36 0.09 1.43 <0.001

Table 6. Relationship between geographic region and ketoacidosis prevalence in Brazil (data from (7)). North/Notheast region used 
as reference level.

Term β estimate Standard error OR P value

Intercept (β0) -1.75 0.22 - <0.001

Region: South (β1) -0.26 0.16 0.77 0.104

Region: North/NE (β2) -0.18 0.16 0.84 0.267

Region: Southeast (β3) 0.18 0.15 1.20 0.237

Table 7. Relationship between geographic region and ketoacidosis prevalence in Brazil (data from (7)). Middle-West region used as 
reference level.

Term β estimate Standard error OR P value

Intercept (β0) -1.56 0.18 - <0.001

Region: South (β1) -0.45 0.09 0.64 <0.001

Region: North/NE (β2) -0.36 0.09 0.70 <0.001

Region: Middle-West (β3) -0.18 0.15 0.83 0.237

Table 8. Relationship between geographic region and ketoacidosis prevalence in Brazil (data from (7)). Southeast region used as 
reference level.
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So, it is importance to pay attention to the setup of 
the reference levels. If there is no apparent rule de-
rived by the data itself or by the prior knowledge 
about the variable values, one recommendation 
that remains is to select a reference level with min-
imum sample size, to allow adequate statistical 
power. Another recommendation that will make 
interpretation easier is to choose categories with 
the same relationship to the event of interest. If 
you believe that older individuals have smaller 
probability to die and people receiving new treat-
ment are less probable to die, put these two cate-
gories as reference. You can use the opposite and 
set younger individuals and standard treatment. 
But choosing older individuals and standard treat-
ment, although possible and not wrong, will diffi-
cult the interpretation of the results.

Conclusion

Logistic regression is a powerful tool, especially in 
epidemiologic studies, allowing multiple explana-
tory variables being analyzed simultaneously, 
meanwhile reducing the effect of confounding 
factors. However, researchers must pay attention 
to model building, avoiding just feeding software 
with raw data and going forward to results. Some 
difficult decisions on model building will depend 
entirely on the expertise of researcher on the field.
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