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Abstract

Significance testing in comparisons is based on Student’s t-tests for pairs and analysis of variance (ANOVA) for simultaneous comparison of several 
procedures. 
Access to the average, standard deviation and number of observations is sufficient for calculating the significance of differences using the Student’s 
tests and the ANOVA. Once an ANOVA has been calculated, analysis of variance components from summary data becomes possible. Simple calculati-
ons based on summary data provide inference on significance testing. Examples are given from laboratory management and method comparisons. 
It is emphasized that the usual criteria of the underlying distribution of the raw data must be fulfilled.
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Lessons in biostatistics

Introduction

Comparison of results from different experimental 
designs, between instruments and between meth-
ods is an everyday task in analytical chemistry and 
its applied sciences, e.g. laboratory medicine. Usu-
ally, statistical inference is based on original obser-
vations fed into statistical packages that deliver 
the requested statistics. The obvious procedure is 
to start with inspecting the raw data to determine 
the appropriate statistical methods to be used. 
However, sometimes the raw data may not be 
available whereas the central tendency (e.g. the 
average), the dispersion (e.g. the standard devia-
tion) and the number of observations may be. Yet, 
it may be desirable to evaluate the significance of 
a difference between datasets. Typical situations 
may be related to laboratory management and 
scientific evaluation of reports. We describe how 
this can be accomplished if the datasets are inde-
pendent and fulfil the requirements of Student’s t-
test or analysis of variance (ANOVA). Resolution of 

an ANOVA table to provide analysis of variance 
components is particularly discussed.

Methods

Student’s t-test

There are two Student’s t-tests; one evaluates pairs 
of results with something in common, known as 
the dependent test, tdep. The other compares the 
averages of independent results, tind. 

A classic example of a dependent design is com-
paring the results obtained from the same individ-
uals before and after a treatment. An independent 
design would be, for instance, comparing the re-
sults obtained in groups of healthy men and wom-
en. Thus, the tdep considers the difference between 
every pair of values, whereas the tind only consid-
ers the averages, the standard deviation and num-
ber of observations in each group. Access to these 
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intermediary quantities allows calculating the t-
value.

To further understand the difference between the 
t-values and the formal prerequisites and condi-
tions for their use, it may be helpful to consider 
how they are calculated.

The tdep considers the differences between paired 
measurements and is calculated by the different 
but equivalent formats of the Equation 1 (Eq.1):

                   

If expressed in words, tdep is the average of the dif-

ferences between observations, d , divided by its 

standard error 








n

sd . Rearrangement of Eq.1 may 

facilitate calculations. The degrees of freedom, df, 

is n-1. 

The differences shall be normally distributed. If 
that distribution is far from normal then using the 
tdep cannot be justified and a non-parametric test 
should be applied, e.g. the Wilcoxon test.

The tdep is limited to comparing two sets of de-
pendent individual data, e.g. results before and af-
ter an intervention. The datasets must be of equal 
sizes but need not be normally distributed. If the 
parameters of Eq.1 are known, i.e. the average dif-
ference between pairs and their standard error of 
the mean, then tdep can be calculated without di-
rect access to the original results. It is unlikely that 
results of a comparison are reported in this way 
and the intermediary calculation of tdep does not 
have a given place in the arsenal.

Student’s tind from intermediary data

Access to the average, standard deviation and 
number of observations but not the original ob-
servations allows evaluating the significance of 
the difference; i.e. when results are presented with 
only information about the central tendency and 

data dispersion. Provided the original datasets can 
be assumed to be normally distributed the signifi-
cance (tind) of a difference between the averages 
can be estimated according to Equation 2 (Eq.2).

The tind considers the difference between the aver-
ages of two datasets in relation to the square root 
of the sum of their respective squared standard er-
ror of the mean. 

This standard calculation may be less known or 
recognized in the era of calculators and statistical 
packages. The averages and standard deviations 
are calculated or otherwise available from the 
original data sets and then entered into Eq.2. If the 
number of observations in the groups is similar 
and the standard deviations of the same magni-
tude, the degrees of freedom, df, is n1 + n2 – 2. 

Consider, for instance, that the cholesterol concen-
tration of two groups of healthy men from widely 
different environments was reported as the aver-
ages, standard deviation and number of observa-
tions (Table 1). The calculated tind using Eq.2 was:
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Although we do not know for certain if the origi-
nal results were normally distributed – and inde-
pendent – this may be a reasonable assumption 
considering that the averages and standard devia-
tions of the data were originally provided. 
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Group 1 Group 2

Average 5.0 4.4

Standard deviation 1.4 1.3

F-value 1.16

Number of observations 100 100

Table 1. Results of cholesterol concentration measurements in 
two groups of men
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The variances were compared and evaluated by an 
F-test and found not significantly different. Thus, 
the df = 100 + 100 – 2 = 198. 

The significance of a t-value (however generated) 
is evaluated by the same t-table which is available 
in many text books and on the internet (1). The 
null hypothesis is that there is no difference be-
tween the groups. The null hypothesis is discarded 
if the t-value is above a critical value (usually cor-
responding to P = 0.05). A calculated t-value can 
be directly evaluated by the Excel functions T.
DIST.2T(t, df) or T.DIST.RT(t, df), the functions refer-
ring to a two- or one-tail problem, respectively. 

The cholesterol values of the two groups are sta-
tistically different with P = 0.002 and P = 0.001 for 
the two- and one-tail problem, respectively. The 
“critical value” is obtained by the functions T.
INV(probability;df) and T.INV.2T(probability;df) for 
one and two tail problems, respectively. 

The variances of the distributions as well as the dif-
ference between their averages are the important 
quantities in evaluating the difference between 
the distributions. The variances are assumed to be 
equal in the estimation of the df. This can be test-
ed using the “F-test”. This test is designed to com-
pare the dispersion (variance) of two datasets with 
the null hypothesis that there is no difference. The 
assumption in this case is that one of the variances 
is larger than the other; this is therefore a one-
tailed problem. To fit tables and other calculations 
the larger of the two variances shall be in the nom-
inator. Consequently, the calculated statistic, the F-
value, is always above 1. The farther away from 
one, the larger is the probability that there is a dif-
ference between the variances. 

To quantify the probability of a difference be-
tween the variances, a table should be consulted 
but the table data can also be retrieved from Excel. 

As an example we can evaluate a possible differ-
ence between the variances reported in Table 1.

The probability (P) for a significant difference of 

the F-value 1.16 is 1.16
3.1
4.1 2

=





=F . The corre-

sponding probability P = 0.231 (one-tail) is ob-
tained using the function F.DIST.RT(x,df1,df2). This 

should be compared with the critical P-value (Pcrit) 
for the desired significance level and degrees of 
freedom for the individual datasets using the func-
tion F.INV.RT(p,df1,df2). Since Pcrit = 1.39, the null 
hypothesis is not discarded and the variances are 
equal. The “RT” (right tail) in these functions limits 
the calculations to a one-tailed situation where 
only the upper limit of the right skew distribution 
is considered.

If the F-test reveals that there is a high probability 
of a significant difference between the variances, 
then estimating the df according to Welch-Satter-
thwaite should be considered (2,3). A detailed dis-
cussion of this procedure is outside the scope of 
the present paper. The calculated df will not al-
ways be an integer and since only the df, not the t-
value per se is affected, the outcome may only in-
directly have an effect on the inference. 

Accordingly, however, Excel offers two tind proce-
dures, “assuming equal variances” and “unequal 
variances”. It is safer to always use the latter; if the 
variances happen to be similar, the t-value and the 
degrees of freedom are anyway calculated cor-
rectly. 

If the datasets are not normally distributed, non-
parametric procedures should be used, e.g. the 
Mann-Whitney test.

ANOVA from intermediary results

If a specific quantity of a given sample is measured 
repeatedly on several occasions, e.g. using differ-
ent instruments or on different days, it may be in-
teresting to compare the averages in the groups 
or from the various occasions. The procedure of 
choice in this case is the ANOVA. The ANOVA re-
duces the risk of overestimating a significance of 
differences caused by chance which may be an ef-
fect of repeated tind. 

Since several groups/instruments are studied, ob-
servations are repeated in “two directions”, within 
the groups and between the groups. Consequent-
ly, the ANOVA reports the variation within the 
groups and between the groups.

The ANOVA is calculated from the “sum of squares”, 
i.e. the differences between observations and their 
averages, squared. Essentially, this is the same 
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principle as that of calculating the sample vari-

ance, i.e. the sum of squares ( )∑ − 2xxi divided 
by the df (n-1). 

The stepwise resolution of the example in Table 2 
is given in Equations 3, 4 and 5 (Eq.3-5), and also 
summarized in Table 3.
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MSb = SSb / df = 0.073
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21SS  = 0.2222;

df = N – m = 91

MSw = SSw / df = 0.0024

( ) ( )21 isNbwtot ×−=+=SS SS SS
 
= 0.2516

df = N – 1 = 95

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

Number of observations 18 15 24 21 18

Average 1.38 1.37 1.42 1.39 1.40

Standard deviation 0.040 0.050 0.060 0.050 0.040

Table 2. Results from repeated measurements of a sample in five different laboratories

df SS MS F - value P P0.05

Between 4 0.0294 0.0073 3.01 0.022 2.47

Within 91 0.2222 0.0024

Total 95 0.2516

df – degrees of freedom. SS – sum of squares. MS – mean square.

Table 3. The ANOVA analysis based on data from Table 2

(Eq.3)

(Eq.4)

(Eq.5)

The following abbreviations are used to describe 
the calculations involved: SSb, SSw and SStot repre-
sent the sums of squares between groups (SSb), 
within groups (SSw) and total (SStot); MS represents 
the mean square obtained as SS/df; i individual 

groups, ix  the average of the values in group i, ix  

the average of all observations, ( )ms  the standard 
deviation of the values in group m, m the number 

of groups, mn  the number of observations in 
group m and N  the total number of observations. 
The symbol Σ is a conventional shorthand symbol, 
interpreted as the sum of the terms in the adjacent 
parenthesis.

The Eq. 3 - 5 show that in the calculation of an 
ANOVA only the averages, variances, and the ob-
servations in each group and number of groups 
are necessary. 

The sum of squares may be difficult to visualize 
but divided by the degrees of freedom the mean 
squares (MS) are created. These represent the vari-
ances within the groups (MSw) and between the 
groups (MSb). However, the latter also includes the 
variances emanating from the within groups and a 
correction needs to be considered to estimate the 
“pure between group variance”. See below Equa-
tions 6 and 7 (Eq.6 and 7).
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If the null hypothesis H0: µ1=µ2=…=µm, is false then 
MSb > MSw and thus the ratio MSb / MSw > 1. µn rep-
resents the true averages of the groups. This ratio 
can be recognized as an F-test and used to evalu-
ate the difference between the groups. The calcu-
lated F-value is evaluated in a common F-table or 
by Excel function F.DIST.RT(F,df1,df2) or F.
DIST(F,df1,df2,cumulative) and expressed as a prob-
ability for the validity of the null hypothesis. Nor-
mally, a probability less than 5% (i.e. P < 0.05) is an-
ticipated for statistical significance.

The results of an ANOVA are conventionally re-
ported in a table (Table 3) based on the actual re-
sults, Figure 1.

Analysis of variance components

The ANOVA allows defining the between- (repro-
ducibility) and within- (repeatability) group vari-
ances. The key elements of the ANOVA table are 
the MSs.

The MSw represents the within group variance 
whereas the MSb is a composite measure of the 

“pure between ( )2
bs ” and within-group variances. 

The necessary correction to isolate the pure be-
tween-group variance is:

n
s wb
b

−
=2 MS MS

where n is the number of observations in the 
groups. If the number of observations is the same 
in every group, the design is “balanced” and n 
equals the average number of observations in the 
groups, whereas in an unbalanced design the 

number of observations differs between the 
groups and a correction needs to be included:

( )2

0 N
nsnn i

i −=

where N is the total number of observations (2,4).

However, the correction by subtracting the rela-
tive variance of the number of observations over 
the groups is bound to be small and therefore the 
average number of observations in the groups is 
usually appropriate (Table 4). 

The combined variance is:

Figure 1. Results from Table 2.
The squares represent the averages, the continuous line the 
standard deviations, and the dotted error bars the standard er-
ror of the mean for each laboratory listed in Table 2.
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(Eq.6)

(Eq.7)

Variance SD CV, %

Pure between component 0.000255 0.016024 1.1

Ditto adjusted for unbalance 0.000257 0.016024 1.1

Within component 0.002442 0.049414 3.5

Total 0.002697 0.051947 3.7

SD – standard deviation. CV – coefficient of variation. The number of significant digits is exaggerated to visualize the effect of 
correction for an unbalanced design.

Table 4. The analysis of variance components 
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MSwbs +2

This quantity is also called intra-laboratory vari-
ance (3). The corresponding intra-laboratory 

standard deviation is ( )wbs +2 MS . The result of 
the example in Table 2 is summarized in Table 4.

If the MSb is smaller than MSw, their difference 
(Eq.6) would become negative and the sb cannot 
be calculated. In such cases the total variance is 
conventionally set equal to MSw.

A total variance can also be calculated directly 
from all the observations. However, this approach 
may over- or underestimate the intra-laboratory 
variance depending on the between- and within 
group variances.

Discussion 

Statistical software may produce results, irrespec-
tive of the validity of the input data, or put another 
way, the chosen statistical procedure may not be 
“fit for purpose”. It is therefore necessary to under-
stand what is going on “behind the scene”. As a 
bonus, procedures to estimate some test quanti-

ties without access to the original data become 
available. This may have practical consequences in 
laboratories’ comparisons of results, particularly 
using Student’s independent t tests, ANOVA and 
Analysis of variance components. The same limita-
tions regarding normality and equal variances will 
apply as when using raw data but since the input 
data, particularly the standard deviation, already 
require normality this is usually not a major issue. 
The intermediate calculation of an ANOVA may be 
justified since the results of repeated measure-
ments of a particular quantity will vary randomly. 
This also applies to the situation when the same 
sample is measured repeatedly in different labora-
tories. The use of the “Analysis of variance compo-
nents” procedure can be of great help in finding 
the root cause to impaired quality of measure-
ments (2,4,5). The use of intermediary data may be 
particularly useful in managing the quality of con-
glomerates of laboratories where access to sum-
mary data would allow simple calculation of with-
in- and between laboratory imprecision and even-
tually a fair appreciation of the total imprecision.
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