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Abstract

Introduction: Quality indicators (QI) based on percentiles are widely used for managing quality in laboratory medicine nowadays. Due to their 
statistical nature, their estimation is affected by sampling so they should be always presented together with the confidence interval (CI). Since no 
methodological recommendation has been issued to date, our aim was investigating the suitability of the parametric method (LP-CI), the non-para-
metric binomial (NP-CI) and bootstrap (BCa-CI) procedures for the CI estimation of 2.5th, 25th, 50th, 75th and 97.5th percentile in skewed sets of data.
Materials and methods: Skewness was reproduced by numeric simulation of a lognormal distribution in order to have samples with different 
right-tailing (moderate, heavy and very heavy) and size (20, 60 and 120). Performance was assessed with respect to the actual coverage probability 
(ACP, accuracy) against the confidence level of 1-α with α = 0.5, and the median interval length (MIL, precision). 
Results: The parametric method was accurate for sample size N ≥ 20 whereas both NP-CI and BCa-CI required N ≥ 60. However, for extreme per-
centiles of heavily right-tailed data, the required sample size increased to 60 and 120 units respectively. A case study also demonstrated the possibi-
lity to estimate the ACP from a single sample of real-life laboratory data.
Conclusions: No method should be applied blindly to the estimation of CI, especially in small-sized and skewed samples. To this end, the accuracy 
of the method should be investigated through a numeric simulation that reproduces the same conditions of the real-life sample.
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Introduction

The statistical estimation consists of quantifying 
the true characteristic of a population or phenom-
enon basing on a limited set of observations. No-
tably, for the operation of collecting data is indeed 
a random process of sampling, the estimate is not 
unique since it may vary depending on the scatter 
of the sample. The unavoidable uncertainty that 
estimation carries in can be made explicit by trans-
lating the sampling error into a probability distri-
bution (1). Thereby, the most extreme variation of 
the point estimate that is likely to occur can be 
turned into a pair of values bounding an amount of 

probabilities. This interval allows the acceptance of 
any size of estimate variation lying within it and is 
termed confidence interval (CI), to which in turn 
corresponds to a probabilistic confidence level (1). 

By the perspective of sampling, α out of 100 equal-
ly sized samples withdrawn under same condi-
tions from the same population (or set of data ob-
tained for the same phenomenon) are expected to 
give by chance the CI that does not include the 
true (population) value. This probability corre-
sponds to α or Type I error or the false-positive 
rate, and it is nothing but the probability to make 
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an untrue statement about the population basing 
on the sample estimate (1). Mathematically, the 
confidence level is defined as 100-α or (1-α)·100%.

In practice, the number of times the CI complies 
with the confidence level corresponds to the actu-
al coverage probability (ACP), and represents the 
characteristic performance of the CI (2). For CI 
bounds are estimates themselves and thus affect-
ed by the sampling error, it turns out that the de-
clared confidence level may not coincide with the 
one actually observed. Therefore, a reliable CI 
method is the one of which ACP closely approach-
es the stated confidence level (3).

In the exercise of quality it is a common practice 
using point estimates (2). In this regard, laboratory 
medicine has shown since the 1980s a significant 
interest for the percentile-based quality indicator 
(QI), particularly for it can suit well both internal 
and external assessment of quality and proficien-
cy. In the internal management of quality, percen-
tile-based QIs have been introduced to gauge the 
timeliness of sample testing (4). For instance, the 
point estimate of the 50th and 90th percentile of 
the laboratory turnaround time (TAT) has been 
used to investigate the performance change after 
an intervention or to compare the actual perfor-
mance with a pre-established quality goal (5). By 
contrast, in external quality assessment based on 
participatory exercises or surveys, percentile-
based QIs have been adopted to provide factual 
quality goals basing on the distribution of the par-
ticipants’ score according to the “state-of-the-art” 
principle (6,7). In this case, the 25th, 50th and 75th 
percentile have been naturally adopted since suit-
ing well the representation of quality ladder (e.g. 
“poor”, “adequate” and “optimal” respectively) (8).

Despite the use of percentile-based QIs is broadly 
adopted by official organs of laboratory medicine 
like the International Federation of Clinical Chem-
istry (IFCC), actually we do not observe the same 
methodological attention that has been devoted 
to the reference interval (RI) that shares the same 
statistical nature (9,10). Therefore, to date there is 
no official recommendation on the use of the CI 
for percentile-based QIs. In order to support and 
promote the use of CI for this kind of indicators, 

we have investigated the reliability of methods for 
CI estimation in skewed and relatively small sized 
samples, a condition often encountered in quality 
data analysis. Particularly, we have investigated 
the characteristic performance of one parametric 
method based on lognormal transformation (LP-
CI), and of two non-parametric procedures respec-
tively based on the binomial partition of the quan-
tiles (NP-CI) and the bias corrected-accelerated 
bootstrap (BCa-CI). Moreover, a simple case study 
has been carried out in order to show how the 
methodology used in this work can provide the CI 
reliability in a single sample of real-life data, and 
how this would impact on the conformity assess-
ment to quality requirements.

Materials and methods

The CI estimation 

For the principles behind the methods used in this 
study have been already discussed extensively, in 
this section it will be given only a very brief pres-
entation (11). 

The parametric method – since it was devised for 
fairly normal datasets, estimation of CI bounds by 
the LP-CI depends on data transformation. Thus, 
recalling that the percentile is statistic that de-
pends on the order of a series of points xi, yi = g(xi) 
is a suitable transformation if it does not change 
the order but affects only the relative distances 
within the dataset so that yi is normally distributed 
as shown in Figure 1. Thereby, the CI bounds can 
be estimated on yi and then back-transformed to 
xi by means of the function xi = g-1(yi). For instance, 
if g is the natural logarithm, then g-1 is the antilog 
or base-e exponential (12,13). 

The non-parametric procedures – in this place it 
will be only recalled that the percentile is a parti-
tion point of an ordered data set (e.g. 25th percen-
tile = 0.25 or 1:4). Thereby, the binomial distribu-
tion can be used to estimate the largest and small-
est value within the actual data that the percentile 
may take because of sampling, as it is done in the 
NP-CI (11). Alternatively, the same extremes can be 
found empirically (BCa-CI) by choosing the pair 
from the frequency distribution of the values that 
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the percentile takes in a large number of re-sam-
ples of the actual data (11). Notably, whereas the 
NP-CI relies on a discrete set of values, the BCa-CI 
is instead from a continuous one, although both of 

them are constrained within the actual range of 
observed points. 

Equations used for each method in this study are 
detailed in Table 1 with the relative explanation.

Simulation study

A theoretical model represented by the general-
ized 3-parameter lognormal distribution was used 
to generate sets of artificial data each featured by 
a combination of location (α = 0.5, 1.0, 2.0 and 3.0) 
scale (β = 0.5, 0.8 and 1.2) and threshold (γ = 0) in 
order to reproduce a particular degree of asym-
metry and tailing (i.e. skewness) for only positive 
values (X ≥ 0). Particularly, the combinations of 
scale and location parameters were chosen so to 
give rise to the data models as in Figure 2: S3) for β 
= 0.5 the shape was mildly right-skewed and 
changed from minimal right-tailed and platykurtic 
by α=  0.5 to heavily right-tailed and platykurtic by 
α = 3.0; Figure 2: S3b) for β = 0.8 the shape was 
heavily skewed with more pronounced right-tail-
ing; Figure 2: S4) for β = 1.2 the shape was very 
heavily skewed and left-fronted (i.e. almost no left 
tail) turning from leptokurtic with short right-tail-
ing by α = 0.5 to platykurtic with long right-tailing 
by α = 3.0.

Figure 1. Effect of transformation on order statistics. Data in 
panel “a” are lognormally distributed and the vertical line marks 
the median; when the log-transformation is applied as shown 
in panel “b”, relative distances change and data re-distributes 
according to a Gaussian-shape; it can be seen that the transfor-
mation does not affect the partition ratio since the number of 
dots on each side of the median remains the same, so that the 
transformation affects only the scale in which the percentile is 
represented.

Equation of bounds Symbols and notes

Lognormal-parametric (LP-CI)

upper = e [m – (t1-α/2,[n-1,λ]·s·n-0.5)]

lower = e [m – (tα/2,[n-1,λ]·s·n-0.5)]

The e is the base of the natural logarithm (ln); m, s and n are the average, 
standard deviation and size of the normalized sample, t1-α/2,[n-1,λ] and tα/2,[n-1,λ] 
are the quantiles of the non-central t distribution with n-1 degrees of freedom 
and non-centrality parameter λ = -z·n0.5 (z is the quantile of the standardized 
normal distribution corresponding to the percentile of the sample)

Non-parametric (NP-CI)

upper = (n·q)–zα/2·[(n·q)·(1-q)]0.5

lower = (n·q)+zα/2·[(n·q)·(1-q)]0.5

The n is the sample size, q is the partition ratio of the quantile (e.g. 10th 
percentile is 0.1) and zα/2 is the quantile of the standardized normal 
distribution function

Bias corrected-accelerate bootstrap (BCa-CI)

upper = Φ(^z0+[(^z0+zα)·(1-^a·(^z0+zα)-1])
lower = Φ(^z0+[(^z0+z1-α)·(1^a·(^z0+z1-α)-1])

The Φ is the cumulative standard normal distribution, zα and z1-α are the 
quantiles of the standard normal distribution, ^z0 and ^a are parameters for 
the resampling bias and skewness

CI – confidence interval.

Table 1. Equations for bounds of the confidence interval

0.2 0.7 1.2 1.7 2.2 2.7 3.2
observed value (x)

observed value (x)
-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

a

b
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For any possible combination of parameters, it 
was generated 3 batches of 100 samples sized N = 
20, N = 60 and N = 120 respectively, and for each 
of them the CI was estimated for the 2.5th, 25th, 
50th, 75th and 97.5th percentile using the equations 
shown in Table 1 for LP-CI, NP-CI, and BCa-CI, re-
spectively.

Accuracy and precision

Accuracy and precision of the CI estimation were 
represented by respectively the ACP and the me-
dian interval length (MIL). Particularly, ACP for each 
tested condition was obtained by counting the 
number of estimated CI that contained the true 
population percentile (calculated whereby the 
theoretical function generating the samples). The 

optimum of performance was ACP ≈ 1-α which 
was set equal to 0.95 or 95% in this study. Median 
interval length was computed in each subset of 
100 artificial samples by taking the median of the 
differences between the upper and lower bound 
of the CI. The MIL was reported only when the cor-
responding ACP was at least > 90%. 

All the calculations were performed using Excel 
2010 (Microsoft Corp., Redmond, CA), except for 
BCa that was performed using SPSS 20.0 (IBM 
Corp., Armonk, NY) and data generation that was 
carried out exploiting the pseudo-random num-
ber generator embedded in Minitab 17 (Minitab 
Inc., State College, PA).

Case study

From a very large set of real-life turnaround time 
(TAT) data used in previously pushed studies on 
laboratory quality, a subset sized N = 27 of STAT 
tests requested by the Emergency Department in 
a single morning shift was selected as it showed 
right tailing (5,14). In order to assess whether the 
laboratory could suite the timeliness required by 
the Emergency Department, two performance 
specifications were established and two percen-
tile-based QI namely the MED (50th percentile) and 
the P90 (90th percentile) were computed accord-
ingly (15). Particularly, as quality goal it was stated 
that MED < 35 minutes and P90 < 55 minutes. The 
CI reliability under sample conditions was assessed 
by way of a simulation study, following this gener-
al procedure:

1. The lognormal model was fitted to the real-life 
data

2. Goodness-of-it was assessed using the normal pro-
bability plot and the Anderson-Darling statistic

3. The true 50th and 90th percentile were computed 
using the parameters of the lognormal function 

4. Same parameters were used to generate 100 
artificial random samples sized N = 27

5. The CI was estimated by way of either LP-CI or 
NP-CI or BCa-CI 

6. The ACP was calculated counting the times the 
CI contained the true parameter. 

Figure 2. Actual shape of the 3-parameter lognormal probabil-
ity density function used for generating the artificial samples 
according to parameters of scale (β) and location (α). The test-
ing conditions described within the result section are S3 (β = 
0.5, any α), S3b (β = 0.8, any α) and S4 (β = 1.2, any α); γ (thresh-
old) was set equal to 0 in any simulation allowing only non-null 
positive values. For each panel, vertical axis was data density 
and horizontal axis was the random variable X.

S3 S3b S4

0.5

0.5

1.0

2.0

3.0

α

β
0.8 1.2
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The full procedure is detailed in the Supplementa-
ry material.

Results

CI accuracy

When the shape was the kind of S3 and thus mild-
ly skewed (Table 2) as well as of S3b (Table 3) and 
thus heavily skewed, the LP-CI resulted to be the 
best performing method regardless of sample 
size. In fact, LP-CI was able to provide CI estimates 
with ACP close to 95% for both central and ex-
treme percentiles. On the contrary, NP-CI as well as 
BCa-CI were able to give acceptable estimates for 
extreme percentiles only when N ≥ 60. It must be 

noted that under some conditions the three meth-
ods and particularly NP-CI seemed to be conserva-
tive with actual coverage probability about 98-
100%, although quite spuriosly. When shape was 
the kind of S4 and thus very heavily skewed (Table 
4), even the LP-CI required N ≥ 60 to reliably esti-
mate the CI bounds for extreme percentiles. A 
comparable behaviour was observed for both NP-
CI and BCa-CI under same conditions by N ≥ 120. 

CI precision

Under any investigated condition LP-CI delivered 
the smaller MIL. To this regard it must be remarked 
that also the difference between the MIL of NP-CI 
and BCa-CI was often negligible. 

β = 0.5 N = 20 N = 60 N = 120

LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI

Percentile ACCURACY (ACTUAL COVERAGE PROBABILITY, %)

α = 0.5

2.5th 93 31 40 92 81 84 98 87 93

25th 95 93 92 94 93 91 98 95 95

50th 93 91 91 97 98 94 96 98 94

75th 94 98 83 98 98 96 92 92 92

97.5th 94 35 § 96 78 30 92 93 89

α = 1.0

2.5th 95 30 41 95 75 78 93 88 94

25th 95 93 92 93 95 96 93 93 90

50th 95 96 94 95 96 96 95 97 92

75th 95 94 90 96 96 93 97 98 96

97.5th 96 44 § 99 80 48 97 92 90

α = 2.0

2.5th 98 36 43 93 70 79 93 88 94

25th 95 96 92 93 94 93 93 92 92

50th 95 91 91 97 96 95 96 96 96

75th 96 98 94 98 98 94 96 94 92

97.5th 97 42 § 94 80 53 96 92 90

α = 3.0

2.5th 94 32 36 93 76 81 93 91 95

25th 94 94 91 94 96 95 94 93 93

50th 95 93 94 96 98 95 95 93 91

75th 92 95 85 99 98 94 97 93 94

97.5th 94 31 § 99 81 40 95 94 92

Table 2. Performance characteristics of confidence interval estimation with confidence level of 95% under to the lognormal model 
of skewness (S3)

https://www.biochemia-medica.com/assets/images/upload/Clanci/29/29_3/Supplementary_file/030101_Supplementary_material_Ialongo.pdf
https://www.biochemia-medica.com/assets/images/upload/Clanci/29/29_3/Supplementary_file/030101_Supplementary_material_Ialongo.pdf
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β = 0.5 N = 20 N = 60 N = 120

LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI

Percentile PRECISION (MEDIAN INTERVAL LENGTH, arbitrary unit)

α = 0.5

2.5th 0.46 * * 0.26 * * 0.19 * 0.29

25th 0.58 0.84 0.70 0.33 0.39 0.35 0.23 0.29 0.26

50th 0.76 0.79 0.79 0.42 0.56 0.49 0.29 0.38 0.34

75th 1.26 1.54 0.94 0.65 0.85 0.76 0.46 0.52 0.50

97.5th 4.17 * § 2.00 * * 1.36 2.08 *

α = 1.0

2.5th 0.76 * * 0.44 * * 0.31 * 0.51

25th 0.97 1.30 1.04 0.55 0.75 0.73 0.39 0.33 0.45

50th 1.26 1.32 1.33 0.70 0.91 0.90 0.49 0.62 0.58

75th 2.05 2.77 1.90 1.13 1.50 1.39 0.77 0.90 0.90

97.5th 6.60 * § 3.45 * * 2.32 3.57 3.26

α = 2.0

2.5th 2.10 * * 1.18 * * 0.85 * 1.32

25th 2.57 3.72 2.84 1.48 1.94 1.65 1.04 1.00 1.24

50th 3.34 3.56 3.56 1.88 2.38 2.26 1.33 1.65 1.56

75th 5.41 6.88 5.41 2.97 4.01 3.34 2.09 2.45 2.36

97.5th 17.82 * § 9.00 8.33 * 6.25 9.34 8.62

α = 3.0

2.5th 5.62 * * 3.24 * * 2.33 3.35 3.83

25th 6.99 9.94 7.99 4.06 5.22 4.71 2.87 3.95 3.30

50th 8.96 9.97 10.08 5.21 6.61 5.82 3.67 4.60 4.44

75th 14.67 18.41 13.31 8.20 10.62 9.16 5.77 6.55 6.55

97.5th 46.48 * § 24.65 * * 17.31 27.78 26.44

CI - confidence interval. LP-CI - Lognormal-parametric CI. NP-CI - Non-parametric CI. BCa-CI - Bias corrected-accelerated CI. 
*unreliable value since actual coverage probability below < 90%. §unable to achieve 1000 complete iteration for computing 
bounds. Lognormal parameters: α=location, β=scale.

Table 2. Continued.

Table 3. Performance characteristics of confidence interval estimation with confidence level of 95% under to the lognormal model 
of skewness (S3b) 

β = 0.8 N = 20 N = 60 N = 120

LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI

Percentile ACCURACY (ACTUAL COVERAGE PROBABILITY, %)

α = 0.5

2.5th 94 38 49 95 65 73 96 91 92

25th 93 96 91 95 98 98 93 92 95

50th 96 94 98 97 98 93 95 95 94

75th 97 99 91 96 98 97 95 95 95

97.5th 95 32 § 94 80 37 98 95 91
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β = 0.8 N = 20 N = 60 N = 120

Percentile LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI

α = 1.0

2.5th 97 34 38 96 76 79 92 91 96

25th 96 96 80 95 98 97 93 94 92

50th 95 92 93 97 99 99 96 99 97

75th 92 98 69 96 98 87 95 94 92

97.5th 96 34 § 93 77 45 92 93 92

α = 2.0

25th 95 97 93 95 90 90 92 96 97

50th 94 95 90 93 90 91 92 95 93

75th 93 96 94 95 93 90 94 96 97

97.5th 94 49 § 95 72 44 95 92 91

α = 3.0

2.5th 94 19 26 97 66 73 98 94 91

25th 93 94 93 92 95 94 97 96 97

50th 96 95 96 94 96 92 97 95 96

75th 93 96 93 92 93 90 98 94 94

97.5th 94 40 § 95 74 48 96 94 91

PRECISION (MEDIAN INTERVAL LENGTH, arbitrary unit)

α = 0.5

2.5th 0.42 * * 0.24 * * 0.17 0.21 0.25

25th 0.79 1.12 1.01 0.44 0.57 0.49 0.30 0.34 0.36

50th 1.27 1.35 1.80 0.68 0.90 0.83 0.48 0.62 0.60

75th 2.53 2.86 2.18 1.35 1.73 1.50 0.92 1.09 1.10

97.5th 12.33 * § 6.09 * * 4.05 6.01 5.71

α = 1.0

2.5th 0.67 * * 0.39 * * 0.28 0.34 0.38

25th 1.28 1.77 * 0.71 0.91 0.87 0.50 0.68 0.58

50th 2.08 2.24 4.83 1.11 1.34 1.31 0.78 0.94 0.92

75th 4.33 4.75 * 2.12 2.68 2.10 1.50 1.71 1.60

97.5th 22.14 * § 9.68 * * 6.58 11.26 10.72

α = 2.0

2.5th 1.87 * * 1.07 * * 0.76 0.92 1.13

25th 3.54 4.80 4.34 1.96 2.43 2.15 1.38 1.22 1.77

50th 5.87 5.92 6.03 3.06 4.13 3.50 2.12 2.75 2.45

75th 11.81 15.02 12.52 5.87 7.80 6.31 4.12 4.74 4.67

97.5th 62.97 * § 26.20 * * 18.20 26.69 26.46

α = 3.0

2.5th 5.03 * * 2.87 * * 2.06 2.39 3.07

25th 8.84 11.31 10.10 5.27 6.77 5.70 3.72 3.52 4.40

50th 13.76 15.85 19.43 8.08 11.16 9.70 5.80 7.65 7.79

75th 27.10 38.34 34.51 15.64 20.18 16.53 11.14 12.31 12.91

97.5th 134.76 * § 71.22 * * 49.50 74.82 72.09

CI - confidence interval. LP-CI - Lognormal-parametric CI. NP-CI - Non-parametric CI. BCa-CI - Bias corrected-accelerated CI. 
*unreliable value since actual coverage probability below < 90%. §unable to achieve 1000 complete iteration for computing 
bounds. Lognormal parameters: α=location, β=scale.

Table 3. Continued.
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β = 1.2 N = 20 N = 60 N = 120
LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI LP-CI NP-CI BCa-CI

Percentile ACCURACY (ACTUAL COVERAGE PROBABILITY, %)

α = 0.5

2.5th 93 29 42 98 72 78 97 90 93

25th 96 94 91 97 93 94 97 95 95

50th 94 93 94 98 94 96 97 92 93

75th 96 95 90 95 99 97 96 92 94

97.5th 95 43 § 97 74 47 96 94 90

α = 1.0

2.5th 71 40 64 96 82 88 95 84 88

25th 91 86 87 95 96 96 97 96 95

50th 93 91 93 95 96 94 94 96 95

75th 92 97 90 94 98 96 94 92 93

97.5th 84 66 § 98 77 44 95 93 91

α = 2.0

2.5th 74 33 62 95 76 80 92 82 92

25th 93 90 90 96 95 96 95 90 93

50th 96 93 95 95 95 92 94 96 96

75th 90 92 90 96 97 95 96 98 96

97.5th 75 54 § 96 82 45 96 96 93

α = 3.0

25th 90 90 96 93 95 94 95 95 96

50th 96 94 93 95 95 93 94 96 95

75th 94 96 90 98 96 95 95 92 93

97.5th 83 58 § 97 76 44 93 93 88

PRECISION (MEDIAN INTERVAL LENGTH, arbitrary unit)

α = 0.5

2.5th 0.27 * * 0.16 * * 0.12 0.14 0.16

25th 0.88 1.08 1.02 0.51 0.65 0.60 0.35 0.31 0.42

50th 1.84 2.07 2.20 1.04 1.33 1.42 0.72 0.89 0.87

75th 5.40 6.86 5.62 2.62 3.57 2.99 1.80 2.10 2.04

97.5th 51.67 * § 20.33 * * 12.99 22.16 22.02

α = 1.0

2.5th * * * 0.26 * * 0.19 * *

25th 1.53 * * 0.84 1.08 0.99 0.58 0.48 0.70

50th 4.03 4.07 4.83 1.78 2.11 1.96 1.20 1.57 1.53

75th 13.67 18.01 15.12 4.55 5.61 4.86 3.00 3.44 3.60

97.5th * * § 36.63 * * 22.16 30.76 27.05

α = 2.0

2.5th * * * 0.75 * * 0.51 * 0.74

25th 4.15 4.89 5.20 2.21 2.90 2.64 1.58 0.99 1.83

50th 11.20 10.82 13.09 4.73 5.88 5.52 3.24 4.15 3.91

75th 40.06 47.92 39.67 12.17 15.75 13.64 8.15 9.76 3.91

97.5th * * § 97.22 * * 61.56 94.76 85.71

α = 3.0

2.5th * * * 1.94 * * 1.43 * 2.03

25th 10.57 12.20 13.76 5.90 7.71 7.43 4.13 5.49 5.26

50th 28.26 29.63 34.36 12.39 15.88 14.20 8.83 10.93 10.68

75th 99.30 121.85 92.59 31.36 39.59 * 22.25 25.35 24.76

97.5th * * § 244.23 * * 170.15 252.03 *

CI - confidence interval. LP-CI - Lognormal-parametric CI. NP-CI - Non-parametric CI. BCa-CI - Bias corrected-accelerated CI. 
*unreliable value since actual coverage probability below < 90%. §unable to achieve 1000 complete iteration for computing 
bounds. Lognormal parameters: α=location, β=scale.

Table 4. Performance characteristics of confidence interval estimation with confidence level of 95% under to the lognormal model 
of skewness (S4)
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Case study

median and P90 were 34.78 and 43.30 minutes re-
spectively thus within the specifications of MED < 

35 and P90 < 55. The results relative to CI and their 
performance characteristic are shown in Table 5. 
As it can be seen, from a single analysis the LP-CI 
gave the shortest interval for both the 50th and 

50th percentile (MED) 90th percentile (P90)

point estimate (minutes) 34.78† 44.30†

95% LP-CI (minutes)† 33.59 to 37.97 40.72 to 48.18

ACP (%)§ 90 80

MIL (minutes) 4.2 7.1

95% NP-CI (minutes)† 32.38 to 37.65 39.09 to 52.19

ACP (%)§ 96 94

MIL (minutes) 5.2 12.9

95% BCa-CI (minutes)† 32.68 to 37.32 41.19 to 49.85

ACP (%)§ 89 83

MIL (minutes)* 3.8 10.8

MED - 50th percentile-based TAT indicator. P90 - 90th percentile-based TAT indicator. ACP - actual coverage probability. MIL 
- median interval length. CI - confidence interval. LP-CI - Lognormal-parametric CI. NP-CI - Non-parametric CI. BCa-CI - Bias 
corrected-accelerated CI. †estimated on real-life data with N = 27. §estimated on 100 samples with N = 27.

Table 5. Case study results of turnaround time indicators

90th percentile. However, the NP-CI was the only 
one to meet the stated confidence level. Accord-
ingly, the NP-CI showed that only the P90 was met 
indeed since the upper bound of the 50th percen-
tile (37.65 minutes) was greater than the quality 
goal of 35 minutes.

Discussion

In this study we dealt with the analysis of the CI 
performances applied to the point estimate of the 
percentiles used as a quality tool. In this regard, 
our simulation study showed that the ACP was in-
fluenced by the size and asymmetry of the sample, 
as well as by the position of the percentile for 
which the CI was estimated. As it can be seen by 
inspecting the Tables from 2 to 4, LP-CI provided 
the required accuracy already from N ≥ 20 in many 
of the conditions investigated. Nevertheless its 
performance degraded significantly for extreme 

percentiles of samples where right-tailing was 
more pronounced. This was also observed for the 
non-parametric procedures although for them the 
recovery of accuracy required a much larger sam-
ple size and sometimes even greater than 120. 
Hence, non-parametric procedures are preferable 
when the sample size is adequately large and it is 
not possible to identify a normalizing transforma-
tion that may be effective. On the other hand, if 
the transformation was known, the parametric 
method is preferable because it is less affected by 
the size of the sample and by the partition ratio of  
the percentile, particularly when this does not fall 
into the tail of a heavily right-tailed distribution.

This can be explained by recalling that the proba-
bility distribution by means of which the CI meth-
od finds out the bounds must be able to describe 
the effect that sampling has on the point estimate. 
Such a model depends on the way the random 
factors contributing to the sampling variability are 
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combined each other, and for the LP-CI the NP-CI 
and the BCa-CI this is indeed a kind of a fairly bal-
anced equilibrium. In fact, all these methods rely 
on such distributions like the non-central t, the bi-
nomial and the bootstrap that are related with the 
Gaussian and from which they differ just for a 
slight degree of skewness. However, for extreme 
percentiles the corresponding high partitioning 
ratio (e.g. the 2.5th percentile is 0.025 or 1:40) gives 
rise to an unbalanced factor that tends to distort 
the sampling distribution, since some of the val-
ues for the point estimate that fall on the outer 
side of the true percentile can be only rarely ob-
served. Obviously, such a factor is further magni-
fied by the small sample size as well as by the 
skewness of the data, since both of them can cause 
some partition events to be even rarer or at most 
impossible at observation. Thereby, unless the ordi-
nary probability model is not adjusted for handling 
rare events (e.g. using parametric instead of non-
parametric bootstrap), no CI method should be 
considered “a priori” capable of providing the de-
clared confidence level regardless of sample size, 
shape and position of the percentile (3,16). 

Indeed, since the ACP depends on factors that can 
change from sample to sample, the CI estimated in 
a single dataset does not provide any information 
on this fundamental performance. Thereby, con-
cerns could arise about the potential limitations to 
the application of the CI as a quality tool. In fact, 
one could argue that using the CI may be even 
more dangerous than not doing it if there was no 
means to assess its reliability. In this regard, we 
used a case study to show that information on the 
accuracy of the CI under conditions comparable to 
those of the real-life sample could be obtained 
through a simple and reproducible simulation pro-
cedure.

In particular, the case study concerned the use of 
the percentile as QI and the comparison of its 
point estimate in the sample of laboratory data 
with an arbitrary quality goal. This is a fairly com-
mon case, where QI is used to compare the effi-
ciency of a certain laboratory service with the 
needs or expectations of hospital departments 
(17). Notably, the procedure not only allowed us to 
demonstrate which method was reliable (namely 

the NP-CI), but also that the use of the interval in-
stead of the point estimate had a significant im-
pact on the decision-making process. In fact, since 
the CI was not entirely within the cut-off marking 
to the quality goal, it was possible to conclude that 
the judgment of compliance to the specification 
for the MED (as previously obtained through the 
simple point estimate) was instead an effect of 
sampling. Despite this may seem puzzling, owing 
to the use of the CI we were able to assert that an 
erroneous judgment (in our case an untrue state 
of compliance) could only be obtained in 1 out of 
20 repetitions of the same quality exercise under 
the same conditions.

For the sake of completeness, it should be noted 
that the procedure outlined in the case study is 
also suitable when the percentile is used to define 
the quality goal in a participatory exercise. In fact, 
the sample variability of the percentile of the dis-
tribution of scores is made up by pooling the sam-

Figure 3. Effect of the actual coverage probability (ACP) of the 
confidence interval (CI) used to enhance the percentile-based 
cut-off in a participatory quality exercise. The vertical solid line 
represents the cut-off established on the median (50th percen-
tile) score of the participants and respect to which it is stated 
the compliance or not to the performance specification; the ap-
plication of the CI (solid horizontal line) shifts forward the cut-
off to the point of maximum possible variation under the effect 
of sampling; when the ACP fails to meet the declared level of 
confidence (i.e. ACP << 1-α) there are some of the scores (dark 
dots) falling inappropriately within the cut-off (dotted horizon-
tal line) that represent kind of false-positives to this exercise. 

0 1 2 3 4 5 6 7 8 9

observed value (x)

“non-compliance” “compliance”

without Cl

with Cl (ACP≈1-α)

with Cl (ACP<<1-α)

“false positive”
(not in the Cl if lenght
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(median)
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ple variability of each participant, so it can be used 
to construct the CI. In this way, the CI shifts the 
cut-off and modifies some of the judgments on 
the compliance status, as shown in Figure 3. As-
suming that 1-α has been reached, α can be used 
to indicate the probability of false positivity to the 
exercise, which gives a measure of the strength of 
the recommendations to improve or consolidate 
quality. Remarkably, if the CI were inaccurate, α 
would be inflated because some of the scores that 
fall within the interval would instead be found 
outside the length corresponding to the actual ACP.

Limitations of this study concern the nature of the 
numeric simulation and are reassumed in the fol-
lowing. Firstly, just some particular combinations of 
sample size, skewness and position of the percen-
tile were assessed. Hence, there may be some other 
conditions which can affect differently the ACP of a 
particular method, as for instance it was shown by 
Table 5 reporting the results of the case study in re-
al-life samples. Secondly, the ACP provided here is 
indeed an estimate taken on 100 samples, and thus 
it is an approximation to the value that would be 
obtained for convergence taking 1000 or more 
samples (3). Therefore, if this study was replicated 
generating new data, slight but non-significant dif-
ferences could be observed. Thirdly, the lognormal 
model was used just for convenience since the log-
arithmic transformation is well known and readily 
understandable. Nonetheless, thus other right-

tailed distributions could fit equally well the data in 
real-life samples. However, because of the scatter-
ing caused by sampling (or by the random data 
generation as in our case), this makes no significant 
difference in estimation of percentiles and conse-
quently of the CI bounds unless sample size is large 
enough (i.e. N > 500) (18). Therefore, although gen-
eralizable, results of this study should be used to 
orient the choice of the CI method basing on the 
features of the data, and not as definitve proof of its 
performance.

In conclusion, as no point estimate of percentile 
should be provided without the CI, especially 
when it is used as a quality tool in the decision-
making process, it is advisable to assess every time 
the effect of such factors like sample size, skew-
ness and position of the percentile on the method 
accuracy before applying it. This may be done ei-
ther by retrieving evidences from literature, either 
by assessing it directly through a numeric simula-
tion that reproduces the same conditions of the 
real-life sample. To this end, a procedure like the 
one used in this study should be adopted to find 
out the ACP delivered by the method. Of course, 
the use of numerical simulation would strength 
the application of percentile-based QI in laborato-
ry medicine.
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