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Abstract

Uncertainty is an inseparable part of all types of measurement. Recently, the International Organization for Standardization (ISO) released a new 
standard (ISO 20914) on how to calculate measurement uncertainty (MU) in laboratory medicine. This standard can be regarded as the beginning of 
a new era in laboratory medicine. Measurement uncertainty comprises various components and is used to calculate the total uncertainty. All compo-
nents must be expressed in standard deviation (SD) and then combined. However, the characteristics of these components are not the same; some 
are expressed as SD, while others are expressed as a ± b, such as the purity of the reagents. All non-SD variables must be transformed into SD, which 
requires a detailed knowledge of common statistical distributions used in the calculation of MU. Here, the main statistical distributions used in MU 
calculation are briefly summarized. 
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Lessons in biostatistics

Introduction

Uncertainty is defined as a “non-negative parame-
ter characterizing the dispersion of the quantity val-
ues being attributed to a measurand based on the in-
formation used” (VIM 2.26) (1). Measurement uncer-
tainty (MU) has been an important parameter in 
laboratory medicine for over two decades. The In-
ternational Organization for Standardization (ISO) 
standard 15189 states that “The laboratory shall de-
termine the uncertainty of results, where relevant 
and possible” (2). The ISO recently released a new 
standard (ISO 20914) on how to calculate the MU 
in laboratory medicine (3).

Uncertainty is considered to be an inseparable 
part of all types of measurements. Any measure-
ment result without uncertainty is an abstract 
number. For example, a number with an absolute 

value, such as 10, cannot be the result of a meas-
urement because numerically “10” means that all 
digits behind the last one are zero, i.e. 10.000…∞. 
Obviously, no measurement has this accuracy and 
therefore the number “10” itself is an abstract (hy-
pothetical) number. In practice, we cannot meas-
ure a quantity free from uncertainty. Consequent-
ly, in metrology, the measurement results cannot 
be expressed as an absolute number, because of 
the uncertainty of this result (4). 

In measurement procedures, we use various in-
struments and reagents. All data produced by in-
struments and reagents have a degree of uncer-
tainty (5). For example, the reagents that we use 
for calibration will not be absolutely pure. Even if 
the best technology is used, a 100% purity of rea-
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gents cannot be guaranteed. Such claims are not 
logical and cannot be proved. Instead of an exact 
value, the purity should be expressed as a% ± b%, 
which means that the purity of the reagent is un-
certain. Similar approaches can be applied for the 
use of glassware, pipettes, scales, and other instru-
ments used in a laboratory setting. For example, if 
the volume of glassware is given as a ± b mL, such 
as 1000 ± 2 mL, this means that at a given temper-
ature, the volume of the flask may vary between 
998 and 1002 mL. 

Measurement uncertainty can be calculated using 
two different approaches: Type A (bottom-up) and 
Type B (top-down) (5). In laboratory medicine, the 
top-down approach is preferred to calculate the 
MU of test results. In this method, routinely col-
lected long-term QC data, such as internal quality 
control (IQC) and interlaboratory comparisons 
(proficiency testing (PT) or external quality assess-
ment (EQAS)), are used to calculate MU. The calcu-
lation method is very simple, and since almost all 
clinical laboratories collect IQC and EQAS data, it is 
easy for laboratory staff to calculate the MU of 
measurands. However, the top-down method is 
not always perfect and sometimes cause incorrect 
or incomplete calculations (6). Practical calcula-
tions of MU with numerical examples using the 
top-down approach can be found in the literature 
(7,8). In contrast to the top-down approach, in the 
bottom-up approach, all possible sources of MU 
are identified and included in the calculation (6). 
This approach is more useful, especially during 
method development, in-house methods, and 
some tests that require manual interventions, such 
as trace elements analysis by atomic absorption 
spectrometry (AAS). Additionally, the new ISO 
document (ISO 20914) suggests a slightly different 
approach from the bottom up and the top down 
as described in Eurachem and EP29. This manu-
script is appropriate also for the new ISO standard, 
which mainly considers the normal distribution 
and the “top down” approach.

In both the top-down and bottom-up approaches, 
uncertainty is expressed in terms of standard de-
viation (SD). However, the characteristic of compo-
nents of total uncertainty may be different; some 
of them are expressed as SD, while others are ex-

pressed as a ± b, such as the purity of the reagents. 
Therefore, all non-SD variables must be trans-
formed into SD, which required a detailed under-
standing of common statistical distributions used 
in the calculation of MU. In statistics, although 
there are various distribution types, only a few are 
sufficient to calculate the MU in laboratory medi-
cine (Figure 1). Here, we briefly summarize the 
main statistical distributions used to calculate MU 
using both the top-down and bottom-up ap-
proaches. The combination of the sources of un-
certainty to obtain the total MU in laboratory 
medicine is also discussed.

Probability distributions 

In laboratory practice usually we are interested in 
different measurement systems, experiment pro-
tocols, dataset etc. Although we use the same 
sample, method, instrument and reagents the re-
sults of even repeated measurements are not al-
ways the same. When these data are examined 
visually on a graph, it can be seen that they exhibit 
a distribution. In other words, there are probabili-
ties rather than the same values. In order to evalu-
ate the data correctly, we have to know the char-
acteristics of probability distribution. 

In statistics, a probability distribution is a mathe-
matical function that provides all of the possible 
outcomes of a random variable with their corre-
sponding probabilities. Various probability distribu-
tions are used in statistics and they can be classified 
into two main groups: continuous and discrete dis-
tributions (9). Some of these distributions are listed 
in Table 1. Distributions are represented by three 
main parameters: mean, variance and standard de-
viation. These parameters are given for each distri-
bution discussed in this paper where appropriate. 

Statistical distributions used in top-down 
approach

In the top-down approach, we use collected QC 
data to calculate the MU of the measurands. There-
fore, the normal distribution is the main type of 
distribution used in the top-down approach (Fig-
ure 1).
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Normal distribution

The normal distribution is the most frequently 
used distribution type in laboratory medicine (Fig-
ure 2). Due to the contributions made by the fa-
mous mathematician Friedrich Gauss, it is also 
known as the Gaussian distribution. The result of 
repeated measurements, such as imprecision 
studies, generally corresponds to the normal dis-
tribution. The mathematical expression of the nor-
mal distribution is as follows: 

f (x) = 
σ 2π

e1 – (x – μ)2

2σ2

where f(x) is the normal distribution function, σ is 
the SD, μ is the mean, and x is a variable.

As shown in Eq (1) the mathematics of a normal 
distribution is extremely complex and prone to se-
rious errors (10-13). The graph of a normal distribu-
tion is symmetric around the mean and the tails of 
the distributions on the left and right sides gradu-
ally approach, but never intersect, the x-axis, i.e. 
they are asymptotic to the x-axis (Figure 2). The to-
tal area under the curve (AUC) is equal to 1. The 
AUC between the upper and lower limits increases 

by moving these limits away from the mean. From 
this, we can make the following approximations 
(Figure 2):

•	 68.3% of AUC (or results) is encompassed with-
in the mean ± 1 SD;

•	 95.5% of AUC (or results) is encompassed within 
the mean ± 2 SD;

•	 99.7% of AUC (or results) is encompassed within 
the mean ± 3 SD.

Continuous distributions Discrete distributions

Normal distribution* Binomial distribution

Uniform distribution* Negative binomial distribution

Triangular distribution* Beta binomial distribution

Lognormal distribution* Poisson distribution*

U distribution* Geometric distribution

Chi-Square distribution Hypergeometric distribution

Student’s t distribution Bernoulli distribution

Beta distribution Discrete uniform distribution

F distribution Logarithmic series distribution

Exponential distribution Zeta distribution

*Discussed in the paper.

Table 1. Probability distributions commonly used in statistics 

Figure 1. Statistical distributions used in measurement uncer-
tainty (MU) calculation. Top-down approach is simple and pre-
ferred in MU calculation of tests analysed by auto-analysers. 
Bottom-up approach is preferred in methods, which require 
manual interventions such as trace element analysis by AAS/
ICP-MS and various analytes by HPLC, LC-MS/MS, GC-MS and in-
house methods and so on.

Top-down
approach

Normal
distribution

Bottom-up approach

Normal
distribution

Uniform
distribution

Traingular 
distribution

Lognormal
 distribution

U-Shaped
distribution

Poisson 
distribution

Statistical distributions used in
measurement uncertainty

Figure 2. Normal distribution curve is the main distribution used 
in measurement uncertainty calculation of both top-down and 
bottom-up approaches. The total area under the normal distri-
bution curve is equal to 1. The area under the curve between 
consecutive SDs exponentially decreases as it moves away from 
the center of the curve. SD – standard deviation. 

- ∞ + ∞

3 SD 3 SD2 SD 2 SD1SD 1SD

1.96% 1.96% 
13.59% 13.59% 

34.13% 34.13% 

(Equation (Eq.) 1),
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The mean, variance and SD of normal distribution 
can be calculated using the equations given be-
low:

(x – μ)2

μ = 
n

∑i = 1
n

∑i = 1
n

i

i

x

V (x) = 
n – 1

(x – μ)2∑i = 1
n

i
n – 1

SD =

The SD of normal distribution is also the standard 
uncertainty of the measurements. Before using a 
normal distribution, we should ensure that our 
data conforms to this normal distribution. We can 
use normality tests, such as the Kolmogorov-
Smirnov and/or Saphiro Wilk tests, to verify the 
normality of data. The probability of repeated 
measurement results being distributed around the 
mean is not the same everywhere. Thus, the dis-
persion of the data around the mean is not ho-
mogenous. The data is most likely to be close to 
the average, but exponentially decrease towards 
the tails (Figure 2). Repeated measurement results 
may correspond to a normal distribution; however, 
in the laboratory, many datasets may show a dif-
ferent distribution. We therefore need additional 
distribution types to cover all of the data produced 
in laboratory medicine. 

Statistical distributions used in the 
bottom-up approach

The bottom-up approach is not the method rou-
tinely used in automated systems in laboratory 
medicine. However, this approach is preferred in 
methods which need manual interventions, such 
as trace element analysis by atomic absorption 
spectroscopy (AAS) and inductively coupled plas-
ma mass spectrometry (ICP-MS), as well as various 
analyses by high performance liquid chromatogra-
phy (HPLC), liquid chromatography-tandem mass 
spectrometry (LC-MS/MS), gas chromatography–
mass spectrometry (GC-MS), and in-house meth-
ods (14,15). In the bottom-up approach, all possi-
ble sources of MU are identified and included in 

the calculation. The fishbone diagram in Figure 3 
shows the sources of MU. The head of the diagram 
shows the cumulative uncertainty, wherein the 
components of uncertainty are the bones of the 
diagram. Figure 3 shows the various sources con-
tributing to the uncertainty of the test results. 
These sources form a heterogeneous group, such 
as imprecision, recovery, volumetric measure-
ments, and weighing of chemicals. The character-
istics of these components are not the same. For 
example, the imprecision is expressed as SD, but 
the volume of glassware is given as a ± b, such as 
1000 ± 1 mL. Similarly, the purity of a chemical 
might be expressed as c%, such as 99.5%. Howev-
er, in some cases, the manufacturers may not have 
provided additional information. In this case, we 
cannot say that the SD of the chemical is 0.5 and/
or the SD of glassware is 1. Since the volume of the 
glassware is not reported as the mean ± SD, it is 
reported as a ± b, where b is not the SD. A similar 
approach is correct for use in chemicals. From 
these components, we can say that the character-
istic of the data used in the calculation of MU in 
the bottom-up approach is frequently heteroge-
neous. In a statistical sense, the distribution type 
of these data is not the same. However, the total 
uncertainty is calculated by combining all these 
components using the Gaussian approach (taking 
the square root of the sum of squares of the com-
ponent uncertainty). To do this, all the compo-
nents must be expressed in SD or relative standard 
deviation (RSD); otherwise, the calculated results 
will be incorrect. To overcome this problem, as we 

Figure 3. In bottom-up approach, the sources of measurement 
uncertainty can be illustrated by fishbone diagram. The head 
of the diagram shows the cumulative uncertainty, wherein the 
components of uncertainty are the bones of the diagram.

Purity

Precision Volume

Temperature

Calibration

Recovery

Calibration

CalibrationCalibration

Mass/balance

m(gross)
m(tare)

U(X)

(Eq. 2)

(Eq. 3)

(Eq. 4).
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mentioned previously, all non-SD variables should 
be transformed into SD, which required a detailed 
understanding and prior experience with data 
characteristics and the common statistical distri-
butions used in MU calculation. The common 
types of distribution used in the bottom-up ap-
proach are listed below.

Normal distribution

A detailed explanation of the normal distribution 
is provided in the “top-down” approach section 
above.

Uniform distribution

The uniform distribution is an inseparable part of 
MU calculations, particularly in the bottom-up ap-
proach. As is shown in Figure 3, the uncertainty of 
some sources contributing to the total uncertainty 
is not represented as SD. In this case, the uniform 
distribution can be used to calculate the total un-
certainty. For example, if the volume of a flask is 
given as 1000 ± 4 mL, and if there is no additional 
information, this indicates that the probability of 
the volume being 1000 mL, 998 mL, 1004 mL, or 
1002 mL is the same. Therefore, the probability of 
the volume being any value between 996 and 
1004 mL is the same. Statistically, this is a uniform 
distribution. In this case, we cannot say that the SD 
is 4. Because the volume of glassware is not re-
ported as mean ± SD, it is reported as a ± b, and 
here, b is not expressed as the SD. A similar ap-
proach applies to the composition of chemicals. 

A uniform distribution is a continuous probability 
distribution with a probability density function 
shaped like a rectangle. It is the simplest form of con-
tinuous probability distributions, due to its shape; it 
is also known as a rectangular distribution (Figure 4). 
In contrast to the normal distribution, the mathemat-
ics of the uniform distribution is very simple:

x < a
a ≤ x ≤ b

x > b
f(x) =

1
(b –a)

0

0

where f(x) is the uniform distribution function, a is 
the lower limit, b is the higher limit, and x is a vari-
able (Figure 4).

As shown in Eq. 5, the probability density function 
is constant between a and b. The uniform distribu-
tion is a very practical and common distribution 
type in laboratory practice. When the uncertainty 
of glassware, chemicals, and weighing is included 
in the total uncertainty, calculations related to the 
uniform distribution are required. Similar to all 
other probability distributions, the AUC of the uni-
form distribution is 1. The mean, variance, and SD, 
respectively, of the uniform distribution are as fol-
lows (16): 

μ = a + b

b – a

(b – a)

2

SD = 

V (x) =

2 3

2

12

If the distribution is centered at zero with the end-
points -a and a then the equation of SD will be 
simplified as follow:

 aSD = 
3

In the example given above the volume of the 
flask is given as 1000 ± 4 mL and the standard un-
certainty would be 4/31/2 = 2.31.

In addition to glassware and reagent purity a typi-
cal example of the uniform distribution is the un-

Figure 4. Uniform (rectangular) distribution. In contrast to other 
distributions, the probability density function of uniform distri-
bution is constant between upper (UTL) and lower limits (LTL).

a b
x

f(x) 

Target
UTLLTL

1/(b-a)

(Eq. 5),

(Eq. 6)

(Eq. 7)

(Eq. 8).

(Eq. 9).
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certainty of age used in calculating the estimated 
glomerular filtration rate (eGFR)(17). Estimated glo-
merular filtration rate can be derived from serum 
creatinine and age of patient, as given below: 

eGFR = 186 x [Creatinine (μmol/L) x 0.0011312]–1.154

x [age (years)]–0.203  x [0.742 if female]  x

In this equation, age is given as an integer number 
of years and can be expressed as age ± 0.5. It fol-
lows uniform distribution and therefore the stand-
ard uncertainty of age would be 0.5/31/2 = 0.29. 

Triangular distribution

The triangular distribution is a continuous proba-
bility distribution with a probability density func-
tion shaped like a triangle (Figure 5). In contrast to 
the uniform distribution, the variables in a triangu-
lar distribution have a central tendency, and the 
variables are not distributed uniformly around the 
mean (a detailed review on triangular distribution 
can be found in Kotz et al.) (18). This distribution 
has a minimum (lower limit), maximum (upper lim-
it), and a peak value. These makes it very easy to 
estimate the distribution from data. For example, 
if the volume of a flask is given as a ± b, such as 

1000 ± 5 mL, and if we know that there is a central 
tendency, i.e. the probability of the volume being 
1000 mL is more likely than 995 mL or 1005 mL, in 
this case, it is better to use a triangular distribution 
than uniform distribution. 

The upper and lower limits protect the distribu-
tions from unwanted extreme values, such that 
the triangular distribution is very useful. In con-
trast to the triangular and rectangular distribu-
tions, the normal distribution has no upper or low-
er limits. It is expressed between –∞ and +∞, and 
therefore, at least theoretically, extreme values 
may be present within a normal distribution. Like 
all other probability distributions, the AUC of the 
triangular distribution is 1, and similar to uniform 
distribution, the mathematics of triangular distri-
bution is very simple:

x < a
a ≤ x ≤ c

c ≤ x ≤ b

x > b

f(x) =
2

(b –a)(c –a)
(x –a)

0

0

2
(b –a)(b –c)

(b –x)

where f(x) is the triangular distribution function, a 
is the lower limit, b is the higher limit, c is the peak 
value, and x is a variable (Figure 5). As shown in 
Figure 5, the distribution may be symmetric 
around the mean or not. 

If we assume that the triangular distribution is 
symmetric, then we can calculate the mean, vari-
ance and SD of the triangular distribution as fol-
lows (16). 

μ = a + b + c

b – a

(b – a)

3

SD = 

V (x) =

2 6

2

24

If the distribution is centered at zero with the end-
points -a and a then the equation of SD will be 
simplified as follow:

 aSD = 
6

Figure 5. Triangular distribution. In contrast to uniform distri-
bution, the variables are not distributed uniformly around the 
mean. They have a minimum (lower limit, a, a’, a’’), maximum 
(upper limit, b) and a peak (c, c’, c’’) value. The variables in trian-
gular distribution may be symmetrically or asymmetrically dis-
tributed around the mean. 

f(x)

x
a a’ a’’ b

c

c’’

c’
2/(b-a’)

2/(b-a’’)

2/(b-a)

(Eq. 10).

(Eq. 11),

(Eq. 12)

(Eq. 13)

(Eq. 14).

(Eq. 15).
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The difference between triangular and rectangu-
lar distribution has been widely questioned. How 
do we decide which one to use in practice? It is 
recommended to use triangular distribution if 
there are reasons to expect values near the centre 
than the bounds. In practice, it is rational to expect 
measurement results near the mean rather than 
extremes (5). Therefore, in laboratory practice if 
we have doubt as to which one to use, it is better 
to prefer triangular distribution. In the example 
given above the volume of the flask is given as 
1000 ± 5 mL and the standard uncertainty would 
be 5/61/2 = 2.04.

Lognormal distribution

In statistics, if the dataset is not normally distribut-
ed, we can use some transformation techniques to 
obtain a normally distributed dataset. However, 
these transformations do not guarantee that the 
transformed data will be normally distributed. Fre-
quently, log transformation is the preferred meth-
od because, even if the variables are very different, 
such as 10, 100 and 1000, their logarithms (ln) are 
2.3, 4.6 and 6.9 respectively. If the dataset is not 
normally distributed, the logarithm of dataset may 
be normally distributed. 

The lognormal distribution is a continuous proba-
bility distribution of variables whose logarithm has 
a normal distribution. Thus, the ln(x) is normally 
distributed. The mathematics of a lognormal dis-
tribution is very similar to the mathematics of a 
normal distribution, as follows: 

f (x) = 
xσ 2π

e1 – (ln(x) – μ)2

2σ2

where x is a random variable, and μ and σ are (the-
oretical values) the median and SD of ln(x), respec-
tively. 

The lognormal distribution has a wide variety of 
applications in laboratory medicine; however, it is 
rarely used for calculating uncertainty. Although it 
is commonly used in uncertainty calculation in 
mechanical metrology, this is not the cases for lab-
oratory medicine. 

U distribution

The statistics of continuous data is usually com-
prised of a centre (e.g., mean and target), with the 
data distributed around this centre. The shapes of 
data distributions specify the type of distributions 
including normal, uniform, triangular, and lognor-
mal. However, this central tendency is not always 
the case. Events can occur at the extremes of the 
ranges rather than the centre of the distribution. 
Therefore, the probability of measured results at 
the upper or lower limits is higher than the centre. 
In this case, the distribution of the measured data 
forms the letter “U,” which represents the higher 
frequency of data at the upper and lower limits 
(Figure 6). For example, if we use a temperature 
controller to adjust the temperature of the labora-
tory between 23–25 ºC, the controller system will 
activate or deactivate the heating system at 23 
and 25 ºC, and not at the centre (24 ºC). 

The SD of a U distribution is as follows:

b – a

(b – a)

SD = 

V (x) =

2 2

2

8

If the distribution is centered at zero with the end-
points -a and a then the equation of SD will be 
simplified as follow:

 aSD = 
2

Figure 6. U Distribution. The probability of measured results at 
the upper (b) or lower (a) limits is higher than the centre.

f(x)

x
a b

(Eq. 16),

(Eq. 17)

(Eq. 18).

(Eq. 19).
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In the example given above, the standard uncer-
tainty of heating system at the edge would be 
1/21/2 = 0.71. 

Similar to the lognormal distribution, the U distri-
bution is frequently used by physicists and chem-
ists, rather than in laboratory medicine, and this 
type of distribution is not needed in the same way 
as the normal and uniform (or triangular) distribu-
tions are. 

Poisson distribution

In laboratory medicine, we do not always measure 
the concentration of the analytes. Sometimes the 
specific cell types are counted, even though these 
cells may be rarely seen. One example is the num-
ber of particular types of cells per volume of urine 
or per amount of tissue samples. In these situa-
tions, it is accepted that the counted cells are ran-
domly distributed in the samples, where the rarely 
seen cells (< 10%) conform to a Poisson distribu-
tion rather than a normal distribution (3). 

Similar to the lognormal and U distributions, Pois-
son distribution is also frequently used by physi-
cists.

As shown below, in comparison to the normal dis-
tribution, the mathematics of the Poisson distribu-
tion is simple:

λx e–λ
p (X) =

x!

where λ is the mean of data and x is a variable, 
such as 1, 2, 3, and so on. It is very interesting that 
the variance of the count is equal to the count. In 
this case, the SD is equal to the square root of the 
count:

μ = 

SD = 

V (x) =

λ

Count

Count

Since the MU calculation uses the SD, in the Pois-
son distribution we do not need a complex calcu-
lation to obtain the SD. For example if the mean 
number of white blood cells (WBC) counted in 

urine is 4 per high power field (wbc/hpf), the SD 
(standard uncertainty) of WBC in urine is the 
square root of the count, i.e. 41/2 = 2 wbc/hpf. 

Combining of variances to calculate the 
combined standard uncertainty

In laboratory medicine, uncertainty can be consid-
ered into two main categories: analytical and diag-
nostic. Diagnostic uncertainty arises from various 
sources including analytical uncertainty and bio-
logical variation. Analytical uncertainty arises par-
ticularly from analytical and pre-analytical factors 
(19). If MU has more than one component, we 
must combine the uncertainty of these compo-
nents to obtain the combined standard uncertain-
ty. Mathematically, the variances (SD2) of two sub-
groups can be combined using the following 
equation:

Var (X1 ± X2) = Var (X1) + Var (X2) ±

                                2Cov (X1, X2)

r(X1, X2) = 
Cov (X1, X2)

Var (X1) x Var (X2)

where r is the coefficient of correlation, Cov is the 
covariance, X1 and X2 are the variables. Combining 
Eq. 24 and Eq. 25 will yield the following equation:

Var (X1 ± X2) = Var (X1) + Var (X2) ±
              

Var (X1) x Var (X2)       2r (X1, X2)

where the subgroups (X1 and X2) are independent 
and therefore r is zero, whereby equation (XI) can 
be simplified as follows: 

Var (X1 ± X2) = Var (X1) + Var (X2)

This approach can be applied to more than 2 vari-
ances, which enables calculating the total vari-
ances of various subgroups by taking only the sum 
of the variances. 

In this approach, the combined standard uncer-
tainty (UCS) is calculated using the uncertainty of 
each component as follows: 

(Eq. 20),

(Eq. 21)

(Eq. 22)

(Eq. 23).

(Eq. 24)

(Eq. 25),

(Eq. 26),

(Eq. 27).
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          SD2  + SD2  +  SD2  +  ...  SD2
1 2 3 n 

Ucs =

Combined standard uncertainty is not the final 
step and we have to calculate the expanded un-
certainty (U) which is also requested by ISO 15189. 
To calculate the expanded uncertainty, we have to 
multiply UCS by a coverage factor (k). From the 
equation of normal distribution we know that 
95.5% of results is encompassed within the mean 
± 2SD and therefore a value of 2 is preferred as the 
coverage factor. 

U = k x Ucs 

Conclusion

Recently, the ISO released a new standard on how 
to calculate the MU in laboratory medicine (3). This 

standard will accelerate and facilitate the imple-
mentation of MU calculation in daily practice. The 
most common approach in clinical chemistry to 
estimate the MU is the top-down method, where 
the MU is derived from the available QC results. 
However, in some cases, such as in-house meth-
ods and analyses that involve manual interven-
tions (e.g., HPLC, AAS, ICP-MS, and LC-MS/MS), the 
bottom-up approach is preferred (14,15). In both 
the top-down and bottom-up approaches, to cal-
culate the MU correctly, we need to know the sta-
tistical distribution of components that contribute 
to the MU. Contrary to popular belief, calculating 
MU is simple, where the use of normal and uni-
form (or triangular) distributions is sufficient to 
perform this calculation (see Appendix). 
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Appendix

Using different distribution types to 
calculate measurement uncertainty, a 
practical example

Preparation of a calibration standard for 
copper measured by AAS

The purpose of this example is not to calculate the 
uncertainty of the entire measurement procedure 
of copper by AAS, but rather to show how to apply 
different distribution types to the components of 
total uncertainty. Although this simple example 
does not represent the entire measurement proce-
dure of copper, the preparation of the calibration 
standards is an inseparable part of the in-house 
methods, particularly for the measurement of 
trace elements by AAS.

In this example, the measurand is the concentra-
tion of copper standard solution prepared for the 
calibration of AAS. The concentration depends on 
the purity of the copper obtained from the manu-
facturer, the weighing of the copper, and the vol-
ume of the liquid used to dissolve the copper. The 
following equation can be used to calculate the 
concentration of copper:

cCu = 
1000 x P x m

mg/L
V

where cCu is the concentration of copper calibra-
tion standard, P is the purity of copper provided 
by the manufacturer, m is the mass of the weighed 
copper (mg), and V is volume of the liquid used to 
prepare the calibration standard (mL). 

The procedure of the preparation of the 
calibration standard has two steps:

Step 1. Weigh the copper.

Step 2: Dissolve and dilute.

As shown in Figure 7, in this example, there are 
three main sources of uncertainty: purity (P), mass/
balance, and volume.

Purity

No chemicals are 100% pure. The purity (P) of a 
chemical is expressed as a percentage, a ± b%. If 
the purity provided by the supplier is 99.10 ± 
0.90%, in this case, P is 0.991 ± 0.009. If there is no 
additional information provided by the manufac-
turer regarding the uncertainty of purity, a rec-
tangular (uniform) distribution can be assumed 
(Figure 8). In this case, equation (V) can be used to 
obtain the standard uncertainty as follows:

b – a
2 3 2 3 3

u(P) = = = = 0.0052.
1.000 – 0.982 0.009

Figure 7. Fishbone diagram of uncertainty sources of calibra-
tion standard used to measure copper by AAS.

Figure 8. The distribution (rectangular) of the purity (P) of re-
agents used in calibration of copper measured by AAS. P is the 
same between 0.982 and 1.000.  

1.0000.991

UTLLTL

0.982

Target

Purity

Volume

Reapeatibility

Calibration

Mass/balance

m(gross)
m(tare)

U(Cu)

Mass/balance

To prepare a solution, we have to weigh the chem-
icals. There are 3 main uncertainty sources related 
to weighing: repeatability, readability (the resolu-
tion of the scales used), and calibration function. 
Detailed calculations of the uncertainty related to 
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mass can be very complex, such that, for the sake 
of simplicity, the data provided by the manufac-
turer in the calibration certificate should be used. 
If the standard uncertainty value is 0.01 mg, this 
data can be used directly. In a calibration certifi-
cate, if the uncertainty is expressed as SD, it can be 
assumed to be a normal distribution. As shown 
in Figure 7, due to tared weighing, the uncertainty 
related to weighing should be obtained twice.

u(m) = 0.012  +  0.012  =  0.0141 mg.

Volume

Volume is an important source of uncertainty and 
has three main influences: repeatability, calibra-
tion, and temperature. If the temperature of the 
laboratory is regulated strictly within a given inter-
val, then the uncertainty related to the tempera-
ture can be omitted. In this case, we have to calcu-
late the uncertainty related to the calibration and 
repeatability of the flask. 

a) Calibration: If we use a 100 mL flask and if the 
volume of the flask is given as 100 ± 0.2 mL by the 
manufacturer, the standard uncertainty can be 
calculated using equation (V). If there is no addi-
tional information, we can assume the rectangu-
lar distribution.  

b – a
2 3 2 3 3

u(calibration) = = =

= 0.115 mL

100.2 – 99.8 0.2

b) Repeatability: The filling of the flask has a varia-
tion, whereby the uncertainty related to filling can 
be estimated by repeatability experiments. The 

100 mL flask has to be filled and weighed at least 
10 times. The repeatability experiments are ex-
pected to be normally distributed. If the SD ob-
tained from the fill and weigh experiment is 0.1 
mL, this data can be used directly as the standard 
uncertainty. 

To obtain the uncertainty related to the volume, 
we have to combine the uncertainty calculated 
from calibration and the repeatability using Gauss-
ian approach as follows:

U(V) = 0.1152  +  0.1002  =  0.152.

Calculating the combined standard 
uncertainty

Now that we have obtained the standard uncer-
tainty of purity, mass, and volume (Table I), all 
these components must be expressed as the SD 
(normal distribution). Thus, we have to combine 
these components to obtain a combined standard 
uncertainty. 

The combined standard uncertainty is calculated 
for specific concentrations. Therefore, in the first 
step, the concentration of the calibration standard 
should be calculated. 

Purity: 99.1%

Volume: 100 mL

Mass: 100 mg

cCu = 
1000 x P x m

V

1000 x 0.991 x 100

100
= = 991 mg/L

The uncertainty values for the purity, volume, and 
mass can be combined using Gaussian approach 
as follows:

Table i. The component of uncertainty of the calibration standard for copper measured by atomic absorption spectrometry

Components Value (x) Standard uncertainty u(x) Relative standard uncertainty U(x)/x

Volume 100 mL 0.152 0.00152

Mass 100 mg 0.0141 0.00014

Purity 0.991 0.0052 0.00525
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 = 
cCu

cCu

uc ( ) u(P)
P

+
2

u(V)
V

+
2

u(m)
m

2

uc(cCu) = 

 = 

cCu

cCu

2 2 2×

× 0.0055

(0.00525)  + (0.00152)   + (0.00014)  =

uc(cCu) = cCu × 0.0055 = 991 × 0.0055 = 5.45 mg/L.

In the final step, we have to calculate the expend-
ed uncertainty. To calculate the expended uncer-
tainty, we have to multiply combined standard un-
certainty by a coverage factor (k). Usually, a value 
of 2 is preferred as the coverage factor. 

U(Cu) = 2 × 5.45 mg/L = 10.9 mg/L.


