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Abstract

Introduction: Coronavirus disease 2019 (COVID-19) is known to induce robust antibody response in most of the affected individuals. The objective of 
the study was to determine if we can harvest the test sensitivity and specificity of a commercial serologic immunoassay merely based on the freque-
ncy distribution of the SARS-CoV-2 immunoglobulin (Ig) G concentrations measured in a population-based seroprevalence study.
Materials and methods: The current study was conducted on a subset of a previously published dataset from the canton of Geneva. Data were 
taken from two non-consecutive weeks (774 samples from May 4-9, and 658 from June 1-6, 2020). Assuming that the frequency distribution of the 
measured SARS-CoV-2 IgG is binormal (an educated guess), using a non-linear regression, we decomposed the distribution into its two Gaussian 
components. Based on the obtained regression coefficients, we calculated the prevalence of SARS-CoV-2 infection, the sensitivity and specificity, 
and the most appropriate cut-off value for the test. The obtained results were compared with those obtained from a validity study and a seropreva-
lence population-based study.
Results: The model could predict more than 90% of the variance observed in the SARS-CoV-2 IgG distribution. The results derived from our model 
were in good agreement with the results obtained from the seroprevalence and validity studies. Altogether 138 of 1432 people had SARS-CoV-2 IgG 
≥ 0.90, the cut-off value which maximized the Youden’s index. This translates into a true prevalence of 7.0% (95% confidence interval 5.4% to 8.6%), 
which is in keeping with the estimated prevalence of 7.7% derived from our model. Our model can provide the true prevalence.
Conclusions: Having an educated guess about the distribution of test results, the test performance indices can be derived with acceptable accuracy 
merely based on the test results frequency distribution without the need for conducting a validity study and comparing the test results against a 
gold-standard test.
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Introduction

Serological tests are very helpful for sero-epidemio-
logical studies. Coronavirus disease 2019 (COV-
ID-19) is known to induce robust antibody re-
sponse in most of the affected individuals (1). The 
antibody concentrations could serve as an impor-
tant laboratory index with prognostic implications 

for patients recovering from COVID-19 (2). In spite 
of their limitations, serologic-based assays are cur-
rently the best available method to document 
past infections (3-4). Furthermore, they can be 
used to gauge individual’s immune response to 
severe acute respiratory syndrome coronavirus 2 

mailto:Farrokh.Habibzadeh@gmail.com


Habibzadeh F. et al. Test results frequency distribution and the test performance indices

Biochem Med (Zagreb) 2022;32(2):020705  https://doi.org/10.11613/BM.2022.020705 

2

(SARS-CoV-2) vaccines (5). However, despite the 
widespread applications of such assays, inter-indi-
vidual variability in the immune response due to 
various factors such as host genetic build-up can 
have significant ramifications for the interpreta-
tions of such serologic assays (6,7). Therefore, iden-
tification of the performance indices of these as-
says could have wide-reaching applications in the 
correct interpretation of these tests, both in the 
clinical and public health contexts. 

In a previous study, we have shown that it is possi-
ble to determine the performance indices of a di-
agnostic test with continuous results merely based 
on the frequency distribution of the test results in 
a population, without need for a gold standard 
test, by making an educated guess about the dis-
tribution (8). Application of this method to the dis-
tribution of prostate-specific antigen shows prom-
ising results. Herein, we apply the method to de-
termine if we could harvest the indices solely 
based on the frequency distribution of SARS-
CoV-2 immunoglobulin (Ig) G concentrations 
measured in a population-based study in Geneva, 
Switzerland, by a commercially available serologi-
cal immunoassay and compare the results with 
those derived from a validity study conducted ear-
lier (9,10). 

Materials and methods

Study design

Data from a population-based seroprevalence 
study (SEROCoV-POP study) that measured anti-
SARS-CoV-2 IgG antibodies in sera of the study 
participants from April 6 to May 9, 2020, in Geneva, 
Switzerland, using a commercially available ELISA 
test (Euroimmun; Lübeck, Germany, #EI 2606-9601 
G) targeting the S1 domain of the spike protein of 
SARS-CoV-2, were used in the current investigation 
(9). The ELISA test performance had been evaluat-
ed in a case-control validation study on sera of 181 
patients with confirmed SARS-CoV-2 and 326 pre-
pandemic control serum samples against a whole 
spike protein-based recombinant immunofluores-
cence assay (rIFA, considered the gold-standard 
test) (10).

The final SEROCoV-POP study protocol and the de-
tailed methodology are described elsewhere (9). In 
brief, the study was a population-based study per-
formed on the former participants of the Bus San-
té study and their household members. The Bus 
Santé study population included 20–74-year-old 
people identified through an annual residential 
list established by the local government (11). Per-
manent residents of institutions (e.g., prisons and 
care homes) were excluded from the study (9).

About 1300 randomly selected individuals were 
selected weekly from the participants of the Bus 
Santé study and invited to participate along with 
all their household members aged ≥5 years in the 
SEROCoV-POP study. None of the participants had 
received a SARS-CoV-2 vaccine. All participants, re-
gardless of their past history of COVID-19, were in-
cluded in the study. Participants in quarantine or 
isolation or those with symptoms compatible with 
COVID-19 were asked to postpone their visit to a 
later date. 

The current study was conducted on 2766 SERO-
CoV-POP study participants aged ≥5 years, select-
ed from 1339 households – a representative sam-
ple of the canton of Geneva. A subset of the sero-
logical immunoassay data consisting of the blind-
ed IgG data for two non-consecutive weeks (N = 
1432 samples: 774 from May 4-9, and 658 from 
June 1-6, 2020) for individuals participating in this 
investigation conducted by Unité d’Épidémiologie 
Populationnelle of the Hôpitaux Universitaires de 
Genève (HUG) was used for our analyses.

Educated guess

The ELISA test used in this study was designed to 
detect IgG antibodies against SARS-CoV-2. Howev-
er, the similarity between some of the antigenic 
epitopes of the SARS-CoV-2 and other viruses (e.g., 
HCoV-229E, -NL63, -OC43, etc.) caused cross-reac-
tivity and false-positive test results (10). The fre-
quency distribution of the measured antibodies 
might thus have two peaks – one for those with 
and another for people without SARS-CoV-2 anti-
bodies. Despite the lack of a systematic framework 
to generate an educated guess, looking at the fre-
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quency distribution of the measured antibodies 
would give us a clue.

Ethics

The protocol of the current study was approved by 
the Petroleum Industry Health Organization R&D 
Institutional Review Board. The protocol of the 
original seroprevalence study was approved by 
the Cantonal Research Ethics Commission of Ge-
neva, Switzerland (9). All methods were performed 
in accordance with the relevant guidelines and 
regulations. Informed consent was obtained from 
all study subjects and/or their legal guardian(s) 
who had participated in the original seropreva-
lence study (9). 

Statistical analysis

R software version 4.1.0 (2021-05-18) was used for 
data analysis. Box-Cox transformation was used to 
normalize the highly positively skewed IgG anti-
body frequency distribution (12). The R function 
boxcox of EnvStats package was used to optimize 
the transformation parameter (λ) using the log-
likelihood function (13). Using the default values of 
the R density function, the density curve for the 
transformed IgG values was made. The function 
uses by default a Gaussian kernel, 512 bins, and a 
bandwidth calculated according to the Silverman’s 
rule (14). Using the density values, we then applied 
a binormal (based on our educated guess) non-lin-
ear regression, using the function nlsLM from min-
pack.ml package, as described earlier, to decom-
pose the IgG frequency distribution into its two 
presumably normal components – the first com-
ponent related to the distribution of antibody in 
those without SARS-CoV-2 IgG; the second, those 
with SARS-CoV-2 IgG (8). The general form of the 
binormal equation used for non-linear regression 
was:

y(x) = 
(1 – pr)

S1

φ φx – m1

S1

x – m2

S2S2
+

pr

where φ is the probability density function of the 
normal (Gaussian) distribution; x, the transformed 

SARS-CoV-2 IgG concentration; y(x), the density 
function value at x; pr, the prevalence of SARS-
CoV-2 infection; m1 and m2, means of the first and 
second normal components of the binormal curve 
(Figure 1); and s1 and s2, the standard deviations 
(8). The first and second terms in the above equa-
tion describe the frequency distribution of anti-
bodies in those without and with SARS-CoV-2 IgG 
antibodies, respectively.

A receiver operating characteristic (ROC) curve 
was constructed based on the results obtained 
from the binormal model and compared with the 
ROC curve presented in the original validity study 
(10). Area under the ROC curve was calculated ac-
cording to DeLong et al., and compared to the 
area under the curve reported in the original valid-
ity study (10,15). 

There are several criteria for determination of a 
test cut-off value. Although the most appropriate 
value could be determined by maximizing the 
weighted number needed to misdiagnose, we 
chose to maximize the Youden’s J (sensitivity + 
specificity – 1) to calculate the cut-off value since 
we had no idea about the cost (not limited to the 
financial aspects) of a false-negative test result rel-
ative to a false-positive result (16-18).

Results

Sera of 1432 individuals – 758 (53%) females and 
674 (47%) males, were studied. The participants 
had a median age of 49 (interquartile range (IQR) 
31 to 60) years. The distribution of the measured 
SARS-CoV-2 IgG was highly skewed. The skewness 
decreased from 5.1 to 0.2 after a Box-Cox transfor-
mation (λ  =  -0.869). The binormal non-linear re-
gression resulted in a good fit (r2 = 0.90, Figure 1). 
Our model revealed that the prevalence of those 
with SARS-CoV-2 IgG among the studied popula-
tion was 7.7%; the most appropriate SARS-CoV-2 
IgG cut-off value was 0.90, associated with a test 
sensitivity of 99% and a specificity of 97% (Figure 
2). The ROC curve derived from our model over-
lapped with acceptable accuracy on the plot ob-
tained from the validity study (Figure 2). Based on 
the results, we plotted the density functions for 

(Eq. 1)
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Figure 2. The receiver operating characteristic (ROC) curve 
for the test. The black curve is the one reported in Figure 1C of 
the original validity study (10). The gray curve was constructed 
based on the data obtained from our model. The 95% confi-
dence interval (CI) of the area under the ROC curve (AUC) from 
the validity study includes the AUC derived by our model, 0.99. 
The red circle corresponds to the SARS-CoV-2 IgG cut-off value 
of 0.90.

Figure 1. The relative frequency distribution of SARS-CoV-2 IgG 
(gray area). The thick gray curve is the binormal curve fitted to 
the data. The curve is in fact the result of superposition of two 
normal curves describing the relative frequency distribution of 
non-SARS-CoV-2 IgG antibodies (light gray dashed curve) and 
patients with SARS-CoV-2 IgG antibodies (dark gray dashed 
curve). The vertical black solid line represents the cut-off val-
ue. Note that the x-axis is not linear (transformed by a Box-Cox 
transformation with a λ of -0.869).

Figure 4. The likelihood ratio (LR) for each SARS-CoV-2 IgG an-
tibody concentration. Note that the y-axis has a logarithmic 
scale (base 2) and that the x-axis is not linear (transformed by a 
Box-Cox transformation with a λ of -0.869). The LR varies from 
a minimum of 0 for very low values of IgG concentrations to a 
maximum of 127.33 at an IgG concentration of 70.84.  

Figure 3. The density functions for the distribution of IgG in 
those with (dashed curve) and without SARS-CoV-2 IgG (dot-
dashed curve). The vertical black solid line represents the cut-off 
value, 0.90. The two curves are density functions, which means 
the area under each curve is one. This implies that the function 
value at any given IgG value is equal to the probability of observ-
ing that IgG value in that group. For example, the probability of 
observing an IgG value of 1.5 (vertical dashed line) in a patient 
with SARS-CoV-2 is 0.432 (the height of the thick light gray bar) 
and 0.024 (the height of the thick dark gray bar) in those without 
SARS-CoV-2 antibodies. Note that the x-axis is not linear (trans-
formed by a Box-Cox transformation with a λ of  -0.869). 
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the distribution of IgG in those with and without 
SARS-CoV-2 IgG (Figure 3) as well as a plot show-
ing the likelihood ratio corresponding to each giv-
en value of IgG (Figure 4).

Most serological tests are not perfect and may re-
sult in false-positive and false-negative results. 
Therefore, seropositive rate (apparent prevalence) 
is generally not equal to the prevalence of the dis-

ease of concern (true prevalence) (19,20). Based on 
the derived cut-off value, and test sensitivity and 
specificity, the apparent and true prevalence of 
the disease was calculated for the total data sub-
set studied, as well as for each study week (Table 
1).

Data N Seropositive Prevalence, % (95% CI)

Apparent True

May 4–9 774 89 11.5 (9.3 to 13.8) 8.9 (6.6 to 11.3)

June 1–6 658 49 7.5 (5.4 to 9.5) 4.7 (2.7 to 6.8)

Total 1432 138 9.6 (8.1 to 11.2) 7.0 (5.4 to 8.6)

CI - confidence interval.

Table 1. The apparent and true prevalence of the disease calculated based on the cut-off value of 0.90, test sensitivity of 99.4%, and 
test specificity of 97.1%, according to Rogan and Gladen (19) 

Discussion

Diagnostics in general and serological tests are 
central and fundamental to quality health care 
and research. It has been shown that many sero-
logical tests used for the diagnosis of SARS-CoV-2 
antibodies provide valid, consistent results (21-23). 
For instance, it has been shown that the results of 
MAGLUMI 2019-nCoV IgM and IgG (SNIBE, Shenz-
hen, China) are well aligned with those of Euroim-
mun anti-SARS-CoV-2 IgG and IgA (Euroimmun 
AG, Lüebeck, Germany), and that both immuno-
chromatographic rapid IgM and IgG test and the 
chemiluminescence IgM and IgG immunoassay 
are useful tools for epidemiologic surveillance 
(21,22). However, none of the serological tests is 
perfect. To determine the test sensitivities and 
specificities, we need to compare them against a 
gold-standard, such as reverse-transcription poly-
merase chain reaction (RT-PCR) tests. Herein, we 
presented a technique based on which all the test 
performance indices (plus the prevalence of the 
disease of concern, as well as the most appropriate 
test cut-off value) can solely be computed based 
on the frequency distribution of the serological 

test values in a representative sample of a popula-
tion, without the need for a gold standard.

The method we proposed provided results with 
an acceptable accuracy. The model predicted 
more than 90% of the variance observed in the 
SARS-CoV-2 IgG distribution. The most appropri-
ate cut-off value of 0.90 we derived corresponds to 
the maximum Youden’s J index. However, there is 
no restrict rule for the determination of a test cut-
off value. For example, if we want to have a more 
specific test to decrease the false-positive rate, we 
need to increase the cut-off value (16). In our mod-
el, if we increased the cut-off value to 1.10, the val-
ue used in the original seroprevalence study, the 
specificity would increase to 98%, which was in 
good agreement with the results obtained in the 
validity study, 99% (95% CI 97% to 100%); and, the 
seroprevalence for May 4-9 period – week 5 of the 
original seroprevalence study – would decrease to 
10.6%, expectedly the same value as the one re-
ported in the original study (9,10). According to 
our model, the cut-off value providing the highest 
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accuracy of 98%, is 1.35. This cut-off value corre-
sponds to a maximum number needed to misdi-
agnose of 52, meaning that on average, one out of 
52 people tested is misdiagnosed (either false-
positive or false-negative results) (17).

One-hundred and thirty-eight of 1432 individuals 
in the data subset we examined, had SARS-CoV-2 
IgG concentrations equal to or more than the cut-
off value of 0.90. This translates into an apparent 
prevalence of 9.6% (95% CI 8.1% to 11.2%). Howev-
er, because this value is in fact the test-positive 
rate; it is an unbiased estimate for the true preva-
lence only if we use a test with 100% sensitivity 
and specificity (20). This apparent prevalence is 
usually a biased estimate for the true prevalence. 
Taking into account the test sensitivity and speci-
ficity, nonetheless, it is possible to calculate the 
true prevalence, which is 7.0% (5.4% to 8.6%) in 
this case. The true prevalence was in good agree-
ment with the estimated prevalence of 7.7% di-
rectly obtained from the model, showing the ac-
ceptable predictability of the model in estimating 
the prevalence. This indicates that our model can 
provide the true not the apparent prevalence (20). 

The good fit results (r2  =  0.90), the acceptable 
agreement between the calculated indices and 
those obtained from the validity study, and the 
satisfactory overlap of the ROC curve derived from 
our model with the one obtained from the validity 
study, reflect that our educated guess that there 
should be two subpopulations – one with SARS-
CoV-2 IgG in their sera and another without SARS-
CoV-2 antibodies in their sera (including those with 
cross-reacting antibodies with the SARS-CoV-2 IgG) 
in our test – might be correct. Had the IgG concen-
trations been measured in samples belonging to 
the pre-pandemic era, we would have only ob-
served the light gray dashed curve in Figure 3.

The prevalence of SARS-CoV-2 infection as well as 
the fraction of people with cross-reacting antibod-
ies (resulting in false-positive test results) would 
affect the interpretation of results (6). For example, 
if the prevalence of the disease is less than the 
cross-reactivity rate (as happened early in the pan-
demic), then this method could be problematic as 
there would be no apparent second peak to be 

picked up by the proposed algorithm. If the sec-
ond peak could be identified, the interpretation is 
straight forward, especially when we examine the 
probability density functions of the IgG distribu-
tion in the two groups. For example, the probabil-
ity of observing an IgG value of 1.5 (a positive test 
result) would be 0.432 in those with SARS-CoV-2 
IgG compared with 0.024 in those without SARS-
CoV-2 IgG (maybe one with cross-reacting anti-
bodies), translating into a likelihood ratio of 18.07. 
In other words, an IgG concentration of 1.5 is 
about 18 times more likely to be observed in a per-
son with SARS-CoV-2 IgG (presumably previously 
infected) as compared with a person with a false-
positive test result (maybe one with cross-reacting 
antibodies). Using the proposed technique, we 
can calculate the likelihood ratio for each value of 
SARS-CoV-2 IgG, an index which cannot be readily 
calculated in validation studies (24). 

In conclusion, it is possible to derive test perfor-
mance indices (e.g., sensitivity, specificity, positive 
and negative predictive values, and positive and 
negative likelihood ratios), as well as the most ap-
propriate test cut-off value and the prevalence of 
the condition of interest, without the need for 
conducting a validity study and comparing the 
test results against a gold-standard. 
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