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Abstract

Introduction: The modern approach to quality control (QC) in medical laboratories implies the development of a risk-based control plan. This paper 
aims to develop a risk-based QC plan for a laboratory with a small daily testing volume and to integrate the already optimized moving average (MA) 
control procedures into this plan.
Materials and methods: A multistage bracketed QC plan for ten clinical chemistry analytes was made using a Westgard QC frequency calculator. 
Previously, MA procedures were optimized by the bias detection simulation method.
Results: Aspartate aminotransferase, HDL-cholesterol and potassium had patient-risk sigma metrics greater than 6, albumin and cholesterol greater 
than 5, creatinine, chlorides, calcium and total proteins between 4 and 5, and sodium less than 4. Based on the calculated run sizes and characte-
ristics of optimized MA procedures, for 6 tests, it was possible to replace the monitoring QC procedure with an MA procedure. For the remaining 4 
tests, it was necessary to keep the monitoring QC procedure and introduce MA control for added security.
Conclusion: This study showed that even in a laboratory with a small volume of daily testing, it is possible to make a risk-based QC plan and inte-
grate MA control procedures into that plan.
Keywords: risk-based quality control plan; QC frequency; run size; patient-risk sigma metrics; patient-based real-time quality control
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Introduction

Quality control (QC) is one of the basic principles 
behind the analytical work of medical laboratories 
and guarantees the reliability of laboratory results. 
Traditional quality control of analytical work is per-
formed by testing commercially available control 
materials at certain time intervals. Statistical rules 
are then applied to the obtained results of control 
measurements to check their acceptability (1). 
Westgard’s control rules are the most commonly 
used, introduced 50 years ago. This traditional 
concept of statistical QC has been well developed. 
Nevertheless, there are significant differences in 

how laboratories conduct it, especially in terms of 
the frequency of control measurements and the 
number of control rules they apply (2). The main 
disadvantages of traditional QC are: intermittency, 
the problem of commutability, and the costs of 
materials and labour (3). Due to the intermittency 
of this type of control, there is a risk that the ana-
lytical bias that occurs between two control meas-
urements will remain undetected, causing errone-
ous patient results to be issued (4). Therefore, de-
termining the frequency of control measurements 
is of crucial importance. The 2016 C24-Ed4 guide-
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line of the Clinical and Laboratory Standards Insti-
tute (CLSI) – Statistical Quality Control for Quanti-
tative Measurement Procedures: Principles and 
Definitions – recommends developing a laborato-
ry QC plan based on risk (5). This refers to a risk for 
the patient due to clinical decisions potentially 
based on a laboratory result that contains an error. 
The concept of bracketed control has thus been 
introduced. At certain intervals, control samples 
are measured and interpreted together with pa-
tient samples, suggesting that if controls are ac-
ceptable, the patient results obtained between 
the two controls are also acceptable (6). The fre-
quency of control measurements in a risk-based 
plan is defined based on the Max E(Nuf) parameter, 
which represents the maximum expected number 
of unreliable final patient results issued during the 
presence of an undetected error condition be-
tween two control measurements (7). The calcula-
tion of this parameter is very complex and there-
fore impractical for routine use in laboratories (8). 
The practical information that laboratories actually 
need to establish QC frequency is the run size, i.e., 
the number of patient samples between two con-
trol measurements (9). The calculation has been 
simplified by designing a run size nomogram be-
tween two control measurements (10) and recent-
ly further facilitated due to the availability of an 
online run size calculator on the Westgard website 
(9). In order to use this nomogram, as well as the 
calculator, it is necessary to know the Sigma-met-
ric of a laboratory test. 

Sigma-metric is a measure of quality that quanti-
fies the characteristics of the measurement pro-
cess as the number of defects per million products 
(11). Tests whose Sigma-metric has low value re-
quire control strategies that are complex and ex-
pensive in terms of frequency, number of control 
samples, and number of control rules that must be 
applied. For these tests, the introduction of pa-
tient-based real-time quality control (PBRTQC) 
procedures into a routine quality control plan may 
be considered (6). PBRTQC is a concept of quality 
control that involves using patient results generat-
ed by a laboratory on a daily basis for control pur-
poses (12). Unlike the traditional one, this type of 
control is continuous, free from commutability is-

sues, and requires no costs for control material 
(13,14). One of the ways to use patient results for 
analytical QC is the moving average (MA) (15). 
Moving average involves calculating an average 
value from the obtained set of patient results and 
further using that value for control purposes. The 
MA value is recalculated each time a new result is 
received from the analyser, i.e., the data are con-
tinuously updated and evaluated as patient sam-
ples are analysed. Moving average procedures are 
specific to each test and laboratory and, therefore, 
cannot be generalized or taken from another 
source but require individual selection, optimiza-
tion and validation (16). The complexity of deter-
mination is the main reason PBRTQC has not be-
come widespread in laboratories, despite being 
known for decades (15). However, thanks to the 
availability of software applications that perform 
all the necessary calculations, in recent years, in-
terest in this form of QC has resurfaced (17). In the 
case of laboratories with a small volume of daily 
testing, both the issue of developing a risk-based 
QC plan and the implementation of MA control 
procedures have been insufficiently researched.

This paper aims to develop a risk-based QC plan in 
a laboratory with a small daily volume of testing 
and to integrate the MA control procedures the 
laboratory already has into this plan.

Materials and methods

Materials

The study was performed as a retrospective analy-
sis of data from the laboratory information system 
(LIS) and the external and internal quality control at 
the Department of laboratory diagnostics, Railway 
Healthcare Institute, for the period July 2019 to June 
2020. The laboratory provides services to a general 
adult population at the primary level of healthcare, 
with an average annual number of about 400,000 
tests. The following 10 analytes were included in 
the study: albumin, aspartate aminotransferase 
(AST), creatinine, calcium, chloride, cholesterol, HDL 
(high-density lipoprotein)-cholesterol, potassium, 
sodium, and total proteins. These analytes were 
chosen because the laboratory already has opti-



Lukić V, Ignjatović S. MA procedures in a risk-based QC plan 

https://doi.org/10.11613/BM.2022.020711 Biochem Med (Zagreb) 2022;32(2):020711 

  3

mized MA procedures implemented in the LIS (Next 
lab, BitImpex, Belgrade, Serbia). All tests were per-
formed on the Architect c16000 clinical chemistry 
analyser (Abbott, Abbott Park, USA) with the origi-
nal reagents. Consent for the use of data from the 
LIS in this study was obtained from the Ethical Com-
mittee of the Railway Healthcare Institute.

Methods

Calculation of sigma metrics
For all 10 tested analytes, sigma metrics were cal-
culated according to the formula: Sigma = (TEa - 
Bias) / CV, where all values in the formula are ex-
pressed in %.

The total allowable error (TEa) value was taken 
from the Clinical Laboratory Improvement Amend-
ments (CLIA) data (18). For tests for which CLIA 
doesn’t give a percentage but an absolute value of 
TEa (calcium, potassium, and sodium), the percent-
age values were calculated related to the target 
value of each level of control material.

The coefficient of variation (CV) was calculated 
based on internal QC (IQC) data from the clinical 
chemistry analyser for the period of 6 consecutive 
months. One lot of commercially available control 
material (Multichem S, Technopath, USA) with 3 
levels of value was used.

The bias value for each analyte was calculated 
based on the results of a monthly external QC pro-
gram the laboratory participates in (EQAS, BioRad, 
USA). From the external control results for 12 con-
secutive months, those values were selected that 
correspond to the target values of the analyte in 
the levels of the material used for IQC. For each of 
the three levels of internal control, 3 external con-
trol samples were found in corresponding concen-
trations. For each of these groups of three sam-
ples, the arithmetic mean of the bias obtained in 
external control was calculated, and this value was 
considered the bias for the corresponding analyte 
concentration level.

Development of a multistage bracketed risk-based 
QC plan 
A multistage bracketed risk-based QC plan was de-
veloped for each examined analyte using the 

Westgard QC Frequency or Run Size Calculator 
(19). The following data must be entered in the cal-
culator for each level of control material (in our 
case 3): target concentration, precision, bias, and 
TEa. Target concentrations were taken from the 
manufacturer’s value list, and precision, bias, and 
TEa in the manner already explained when calcu-
lating sigma metrics. The Patient Risk Factor corre-
sponding to the MaxE (Nuf) value was set in the 
calculator to 1. This ensured that the number of er-
roneous patient results would not exceed one if an 
analytical error occurred between two QC events 
(9). For each control material level, in addition to 
the calculated sigma metric value, the calculator 
gives a Patient-risk sigma value. Patient-risk sigma 
is equal to calculated sigma when this is less than 
or equal to 6; if the calculated sigma is greater than 
6, the patient-risk sigma value is always 6. Besides 
individual control levels, the calculator also calcu-
lates the average patient-risk sigma as the arith-
metic mean of patient-risk sigma values for all 3 
levels. We further considered this average patient-
risk sigma value the sigma value of the test. Based 
on it, we classified the tests into 3 groups to de-
sign a control strategy: high sigma strategy (sigma 
≥ 5.0), medium sigma strategy (4.5 ≤ sigma < 5.0) 
and low sigma strategy (3.5 ≤ sigma < 4.5) (20). Fi-
nally, the calculator provides control procedures 
that are suitable candidates for designing a risk-
based control strategy, along with the run size of 
the patients’ results that need to be bracketed by 
the control.

Candidate statistical quality control (SQC) proce-
dures if using 3 levels of control material are pre-
sented in Table 1.

Before including the data from the calculator in 
the QC plan, we defined the maximum daily num-
ber of tests in our laboratory (based on LIS data for 
the previous 6 months) and the desired reporting 
interval (size of the series of patient samples after 
which the results are issued to users). Due to the 
small daily number of tests in our laboratory (for 
the tested analytes, this number ranges from 30 to 
150 per day) and the work organization (one-shift 
work without urgent service or emergency re-
quests), we chose a reporting interval equal to the 
daily number of tests. Following guidelines from 
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SQC procedure N Pfr (%) Meaning of the control rule

Analytical run is rejected if…

1:3s/ 2of 3:2s/ 3:1s/ 6:X 6 0.07 one QC result exceeds 3 SD limit /
or two of three QC results exceed 2 SD limit /

or three QC results exceed 1 SD limit/
or six consecutive control measurements fall on one side of the mean

1:2.5s 6 0.06 one QC result exceeds 2.5 SD limit

1:3s/ 2of 3:2s/ 3:1s 3 0.02 one QC result exceeds 3 SD limit /
or two of three QC results exceed 2 SD limit /

or three QC results exceed 1 SD limit

1: 2.5s 3 0.03 one QC result exceeds 2.5 SD limit

1: 3s 3 0.01 one QC result exceeds 3 SD limit

1: 2s 1 0.05 one QC result exceeds 2 SD limit

1: 2.5s 1 0.01 one QC result exceeds 2.5 SD limit

1: 3s 1 0 one QC result exceeds 3 SD limit

N – number of control measurements per QC event. SQC – statistical quality control. Pfr – probability for false rejection. SD - standard 
deviation. QC - quality control.

Table 1. Candidate SQC procedures and meaning of the control rules

the literature, we then made a start-up QC plan, 
which would be implemented at the beginning of 
each working day before the analysis of patient 
samples, and a monitoring QC plan, which would 
be implemented periodically during working day 
(in our case, at the end of the day) (6).

As the start-up plan, we selected the SQC design 
whose run size, according to the calculator, was 
equal to or greater than the estimated number of 
daily tests we perform. The monitoring QC plan 
was the SQC whose run size, according to the cal-
culator, was equal to or greater than our desired 
reporting interval and whose Pfr (specified in the 
Run size calculator) was ≤ 0.05.

Selecting the optimal MA procedure
The selection of the optimal MA procedure for 
each of the 10 examined analytes was performed 
using the bias detection simulation method intro-
duced by Van Rossum (16,21). The process of opti-
mization and validation of MA procedures and 
their implementation in the LIS has been previous-
ly described in detail (22,23). In short, for each MA 
procedure were selected a calculation formula 
(simple MA or exponentially weighted MA-EWMA), 
block size or weighting factor (depending on the 

formula), inclusion limits (cut-off limits) and con-
trol limits. The introduction of a bias of - 50% to + 
50%, including a TEa bias, was then simulated by 
the software. Based on data from the literature, we 
considered TEa to be clinically significant bias, i.e., 
the key parameter for optimization was the ability 
of an MA procedure to detect bias of TEa size with-
in the total number of daily tests performed by the 
laboratory (1,4,13,17). The number of patient re-
sults required to detect bias of a certain size was 
obtained from MA validation graphs (22). The me-
dian number of results needed to detect a particu-
lar bias means that in 50% of cases, the bias will be 
caught in less than and in 50% of cases more than 
that number of results (21). In the study, we used 
previously obtained data on the ability of each of 
these MA procedures to detect clinically signifi-
cant bias (23). 

Integration of a bracketed SQC plan with MA 
procedures
Finally, we compared the run sizes provided by the 
SQC plan with the ability of optimized MA proce-
dures to detect bias equal to TEa within the maxi-
mum daily number of tests. Based on these data, 
we assessed how MA procedures could be added 
to the bracketed SQC plan.
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QC – Level 1 QC – Level 2 QC – Level 3 Average

TEa
(%)

Bias
(%)

CV
(%)

Sigma
(%)

Risk 
Sigma

(%)

TEa
(%)

Bias
(%)

CV
(%)

Sigma
(%)

Risk 
Sigma

(%)

TEa
(%)

Bias
(%)

CV
(%)

Sigma
(%)

Risk 
Sigma

(%)

Av 
Sigma

(%)

Av Risk
Sigma 

(%)

Albumin 10.00 2.77 1.60 4.52 4.52 10.00 2.24 0.88 8.82 6.00 10.00 1.91 0.92 8.79 6.00 7.38 5.51

AST 20.00 2.47 2.15 8.15 6.00 20.00 1.14 1.36 13.87 6.00 20.00 0.97 1.15 16.55 6.00 12.86 6.00

Calcium 15.43 2.40 3.01 4.33 4.33 10.55 1.87 2.21 3.93 3.93 8.14 2.39 1.43 4.02 4.02 4.09 4.09

Chloride 5.00 0.58 1.23 3.59 3.59 5.00 0.75 0.91 4.67 4.67 5.00 0.65 0.52 8.37 6.00 5.54 4.75

Cholesterol 10.00 2.50 1.62 4.63 4.63 10.00 2.79 1.35 5.34 5.34 10.00 2.71 1.42 5.13 5.13 5.03 5.03

Creatinine 15.00 2.12 3.13 4.12 4.12 15.00 1.85 2.96 4.44 4.44 15.00 0.97 2.42 5.80 5.80 4.79 4.79

HDL- 
cholesterol

30.00 2.45 3.11 8.86 6.00 30.00 2.56 3.41 8.05 6.00 30.00 3.68 3.46 7.61 6.00 8.17 6.00

Potassium 18.66 1.38 0.95 18.19 6.00 11.09 1.02 1.01 9.97 6.00 7.54 0.77 0.92 7.36 6.00 11.84 6.00

Sodium 3.22 0.26 0.73 4.05 4.05 2.76 0.40 0.55 4.29 4.29 2.38 0.28 0.63 3.33 3.33 3.89 3.89

Total 
protein

10.00 1.10 2.46 3.62 3.62 10.00 1.65 2.06 4.05 4.05 10.00 3.31 1.48 4.52 4.52 4.06 4.06

TEa from CLIA, Bias from EQAS, CV from IQC. All sigma values were calculated using a Run-size calculator. Patient-risk factor in all 
calculations was 1. TEa - total allowable error. CV – coefficient of variation. QC – quality control. IQC – internal quality control. AST – 
aspartate aminotransferase. HDL-cholesterol – high-density lipoprotein-cholesterol. Av Sigma – average calculated sigma. Av Risk 
Sigma – average patient-risk sigma.

Table 2. Sigma metrics for each control level of 10 tested analytes and average sigma metrics for all 3 control levels

Statistical analysis

All MA calculations and simulations were per-
formed using the dedicated software MA Genera-
tor (Huvaros B.V., Bloemendaal, The Netherlands) 
(24).

Results

Table 2 shows the input data entered into the Run-
size calculator for all 3 IQC levels of each of the 10 
examined analytes and the sigma metric values 
provided by the calculator for each of them.

Of the 10 tests examined, albumin, AST, cholester-
ol, HDL-cholesterol and potassium had a patient-
risk sigma greater than 5, chloride and creatinine 
between 4.5 and 5, calcium and total protein be-
tween 4 and 4.5, and the worst was sodium with a 
calculated sigma of 3.89. Based on that, the tests 
were divided into 3 groups for designing the QC 
strategy, which is shown in Table 3.

Table 4 shows the run sizes calculated by the Run-
size calculator for the different control rules. From 
Table 4, we chose the simplest multi-rule for the 
start-up QC procedure, which fits all examined an-
alytes and includes 3 measurements (to cover the 
widest possible range of concentrations through 
three levels of control material). In our case, it is 
the 1:3s / 2of 3:2s / 3:1s N3 multi-rule with a false 
rejection probability of Pfr = 0.02. For the monitor-
ing QC procedure, which brackets the end of a dai-
ly series, we selected a single QC rule with one 
measurement that again fits all examined ana-
lytes, and it is 1: 2s N1 with the probability of rejec-
tion Pfr = 0.05 (run size for sodium is border ade-
quate). Looking for a run size appropriate for all 10 
tests simultaneously, it was not possible to select a 
rule with a smaller Pfr.

The characteristics of the MA procedures already 
implemented in our laboratory for the 10 exam-
ined analytes are given in Table 5.
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Category for risk-based SQC 
strategy Sigma value range Analyte

High sigma sigma ≥ 5.0 Albumin, AST, cholesterol, HDL-cholesterol, potassium

Moderate sigma 4.5 ≤ sigma < 5.0 Chloride, creatinine

Low sigma 3.5 ≤ sigma < 4.5 Calcium, sodium, total protein

SQC – statistical quality control. AST – aspartate aminotransferase. HDL-cholesterol – high-density lipoprotein-cholesterol.

Table 3. Categorization of 10 examined analytes according to patient-risk sigma metric values

Analyte
(Maximal daily 
number of 
tests = desired 
reporting 
interval)

Albumin
(30)

AST
(150)

Calcium
(30)

Chloride
(50)

Cholesterol
(120)

Creatinine
(120)

HDL
(120)

Potassium
(50)

Sodium
(50)

Total 
protein

(30)

Control procedure

1:3s/ 2of3:2s/ 
3:1s/ 6:X N6
(pfr 0.07)

1000 1000 842 1000 1000 1000 1000 1000 453 770

1:2.5s N6
(pfr 0.06) 1000 1000 926 1000 1000 1000 1000 1000 522 853

1:3s/ 2of3:2s/ 
3:1s N3*

(pfr 0.02)
1000 1000 178 1000 1000 1000 1000 1000 100 164

1:2.5s N3
(pfr 0.03) 1000 1000 234 1000 1000 1000 1000 1000 142 218

1:3s N3
(pfr 0.01) 1000 1000 51 284 590 308 1000 1000 30 47

1:2s N1†

(pfr 0.05) 1000 1000 70 253 436 269 1000 1000 47 66

1:2.5s N1
(pfr 0.01) 390 1000 25 91 156 96 1000 1000 17 24

1:3s N1
(pfr 0.00) 140 363 9 33 56 35 363 363 6 9

Run size for each candidate control procedure calculated by Run size calculator. *Selected for start-up QC procedure. †Selected for 
monitor QC procedure. N – number of control measurements per QC event. Pfr – probability for false rejection. AST – aspartate 
aminotransferase; HDL – high-density lipoprotein cholesterol. 

Table 4. Run sizes for candidate control procedures for 10 examined analytes

The data in Table 4 show that optimized MA pro-
cedures will undoubtedly detect a clinically signifi-
cant bias within the daily number of tests for 8 of 
the 10 analytes examined.

Considering the data from Tables 3, 4 and 5, we 
made a multistage risk-based QC plan shown in 
Table 6.
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Analyte Type of MA procedure Bias direction Number of results needed to detect a bias equal to the TEa

Minimum Median Maximum

Albumin Simple MA
Block size: 10

negative 6 7 13

positive 5 7 19

AST Simple MA
Block size: 100

negative 20 55 120

positive 44 77 118

Calcium Simple MA
Block size: 10

negative 6 8 10

positive 4 10 16

Chloride Simple MA
Block size: 10

negative 4 7 17

positive 5 8 10

Cholesterol Simple MA
Block size: 25

negative 14 44 134

positive 28 65 225

Creatinine EWMA
Weighting factor: 0.1

negative 6 20 44

positive 27 86 360

HDL-cholesterol Simple MA
Block size: 25

negative 14 18 24

positive 13 18 65

Potassium EWMA
Weighting factor: 0.1

negative 4 8 13

positive 5 9 18

Sodium Simple MA
Block size: 25

negative 11 14 18

positive 4 7 10

Total protein EWMA
Weighting factor: 0.05

negative 8 12 17

positive 5 9 13

MA – moving average. EWMA – exponentially weighted moving average. TEa – total allowable error. AST – aspartate 
aminotransferase. HDL-cholesterol – high-density lipoprotein cholesterol. 

Table 5. Characteristics of optimized MA procedures for 10 examined analytes

Analyte Start-up
QC procedure

Monitor
QC procedure

Albumin, AST, chloride, cholesterol, HDL-cholesterol, potassium 1:3s/ 2of3:2s/ 3:1s N3 MA

Calcium, creatinine, sodium, total protein 1:3s/ 2of3:2s/ 3:1s N3 1:2s N1 and MA

QC – quality control. AST – aspartate aminotransferase. HDL-cholesterol – high-density lipoprotein cholesterol. N – number of 
control measurements per QC event. MA – moving average.

Table 6. Multistage risk-based QC plan

Discussion

In this study we have shown that even in a labora-
tory with a small daily volume of testing, it is pos-
sible to make a risk-based QC plan that combines 
traditional QC and MA procedures. Namely, in pa-

pers about the use of run size calculators and ear-
lier run size nomograms, authors discuss the need 
for this type of control in large laboratories 
(9,20,25). Similar goes for papers dealing with 
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methods of implementing PBRTQC procedures 
(4,26). However, it is clear that laboratories with a 
small daily number of tests, such as our case, also 
need to minimize the risk of issuing an incorrect 
result.

One of the major and well-known challenges in 
making a QC plan in a medical laboratory occurs 
when several different tests, which do not all have 
the same performance, i.e., the same sigma-met-
rics, are run on the same analyser (9). In order to 
make our QC plan as simple as possible for imple-
mentation in routine work, we decided on the ap-
proach of unifying the strategy, including as few 
different rules as possible (20). Therefore, only one 
start-up and one monitoring SQC rule were select-
ed for all examined tests.

Regarding the implementation of PBRTQC into a 
traditional SQC plan, we agree with other authors 
that, though alone it is not enough, PBRTQC cer-
tainly deserves a place in routine laboratory prac-
tice, in addition to traditional control (4,12,14). Both 
traditional QC and PBRTQC have their advantages 
but also their disadvantages. Therefore, it is most 
rational to use them to complement each other 
(3,4,13). In an attempt to combine the best of these 
two control concepts, we presented in this study 
the potential use of MA control procedures in the 
case of tests with different sigma metric values. 
For tests with patient-risk sigma values higher 
than 5 (albumin and cholesterol) and, especially, 
higher than 6 (AST, HDL-cholesterol and potassi-
um), we replaced the monitoring SQC procedures 
with MA procedures. The rational explanation for 
this substitution is based on 2 factors: (1) the small 
daily number of tests the laboratory performs rela-
tive to the run size between two control measure-
ments allowed by the start-up rule and (2) the abil-
ity of optimized MA procedures to detect critical-
size bias within the daily number of tests. Namely, 
for all 5 of these tests, the run size calculated for 
the start-up control rule is 1000 tests, which is 6.6 
to 33.3 times more than the maximum daily num-
ber for each of these tests. At the same time, for 
albumin, AST, HDL-cholesterol and potassium, the 
optimized MA procedures will detect critical-size 
bias in one-fifth to four-fifths of the daily number 
of results, making them a reliable replacement for 

the SQC monitoring procedure. We included cho-
lesterol in this group of tests, although the perfor-
mance of its MA procedure is not as good as for 
the previous 4 analytes. We found justification for 
this in the fact that this test has a high sigma value. 
At the same time, the median number of results an 
optimized MA procedure requires to detect posi-
tive critical bias is between one-third and one-half 
of the daily number of tests. In contrast, the num-
ber of results needed to detect negative critical 
bias is close to the maximum daily number of 
tests. At the other end of the sigma scale, in tests 
with low or marginal performance, such as, in our 
case, sodium (sigma < 4) or calcium and total pro-
teins (sigma just above 4), MA procedures also 
have their place, but as a supplement to the de-
fined monitoring SQC procedures. Namely, the run 
size between two QC events is incomparably 
smaller than in tests with sigma > 4.5, and moni-
toring SQC procedures is necessary. But given the 
good performance of MA procedures (i.e., the abil-
ity to detect clinically significant bias), we believe 
that MA provides additional security between two 
SQC events. In case a bias occurs in the analytical 
system, it will be signalled by an MA alarm, allow-
ing us to perform the SQC without waiting for the 
interval provided by the plan to expire and thus to 
confirm or deny the existence of a problem requir-
ing corrective action. The ability of the sodium MA 
procedure to detect clinically significant bias in 
one-third of the daily number of results prompted 
us to select the same SQC monitoring procedure 
for all tests that were to be performed, despite the 
calculated run size for sodium being discretely 
smaller than the maximum daily number of tests.

When it comes to tests from the medium sigma 
metrics group, we were more careful than with 
high sigma metrics tests, even though the run size 
covered by the start-up rule is 1000 tests, i.e., many 
times greater than their daily number. Based on 
the characteristics of the MA procedure, we acted 
differently with chloride and creatinine. Since the 
MA procedure for chloride reveals a clinically sig-
nificant bias in one-third of the daily number of 
tests, we classified it into tests in which MA is a re-
placement for the SQC monitor. In the case of cre-
atinine, we decided to keep the monitoring SQC 
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procedure because the existing MA procedure 
does not guarantee the detection of a positive 
critical bias within the daily test production.

Regardless of the value of the test’s sigma metrics, 
it should be noted that PBRTQC has the ability to 
detect both preanalytical and analytical errors; 
hence, adding this type of procedure to the QC 
plan can yield multiple benefits (12,14).

When developing a multistage QC plan, it should 
be kept in mind that increasing the frequency of 
QC inevitably increases the laboratory costs. This is 
particularly problematic for small laboratories 
where the percentage of controls in the total daily 
number of tests may become an unacceptable 
cost, even in the case of tests with good sigma 
metrics, unlike in laboratories with large testing 
volumes (6). In this regard, we believe it is an im-
portant finding of this paper that the inclusion of 
MA procedures in a risk-based QC plan contribut-
ed to reducing QC costs. For 5 out of 10 examined 
tests, this concept enabled replacing a monitoring 
SQC procedure with an optimized MA procedure. 
Other authors have already shown that the use of 
PBRTQC brings significant savings in both money 
and time (27).

One of the key parameters for calculating sigma 
metric and thus the run size between two QC 
measurements is the quality requirement of a spe-
cific test, expressed as TEa (20). When discussing 
the issue of data sources for TEa, there is no con-
sensus in the current literature (28,29). In a way, it 
is left to individual laboratories to choose a perfor-
mance specification according to their own practi-
cal needs. Therefore, we opted for CLIA data be-
cause we have used it before to calculate sigma 

metrics and because we find those performances 
achievable. At the same time, we are, of course, 
aware of the existence of other and far stricter per-
formance specifications, including those based on 
biological variation (13,28,30). However, we know 
from the already published studies that MA proce-
dures are inferior in detecting TEa based on bio-
logical variation, and our goal was to include 
PBRTQC in the QC plan (13,23). In the next period, 
we will certainly work on improving the sigma 
metrics of our tests: reducing CV and bias could 
potentially ensure the application of more strin-
gent TEa.

Regarding the limitations of our study, we have 
only developed a risk-based QC plan for 10 clinical 
chemistry analytes but it should be applied to all 
tests performed by our laboratory. Also, it would 
be necessary to examine in routine practice how 
often the MA procedure will detect a problem be-
fore the scheduled monitoring SQC procedure.

In conclusion, we can say that the study has shown 
it is possible to make a risk-based QC plan even in 
a laboratory with a small daily volume of testing, 
and MA procedures deserve their place in this 
plan.
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