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Abstract

Introduction: A control chart based on Hotelling’s T² multivariate statistics was used to monitor the quality of an immunoenzymatic assay for plas-
ma levetiracetam. The chart incorporated a multi-level quality control (MLQC) system with three concentration levels of the analyte and included 
the analytical performance specification (APS) for therapeutic drug monitoring.
Materials and methods: Data were collected from March 1 to August 14, 2024, comprising 84 consecutive triplets of values for the three MLQC 
levels. The initial 59 triplets were used to estimate the variance-covariance matrix and vector of means (phase I). These estimates were then applied 
to calculate Hotelling’s T² for the remaining 25 triplets (phase II). The pharmacokinetic model of Fraser was employed to derive the APS for leveti-
racetam, based on a twice-daily dosing scheme and a median half-life of 8 hours.
Results: The three MLQC levels showed significant correlations (r > 0.6) in both control phases. The Hotelling’s T² control chart detected no out-of-
specifications states (OC), compared to 12 OC signals from individual Levey-Jennings charts monitoring the MLQC levels separately. The integration 
of the APS into the Hotelling’s T² chart provided additional insights into the process quality, and in two instances, it aligned with the OC signal from 
at least one of the Levey-Jennings charts.
Conclusions: Hotelling’s T² multivariate chart is effective for internal quality control of laboratory tests. As MLQC data offer correlated information, 
this approach is advantageous over multiple individual univariate charts as it ensures the correct level of false positive and false negative alarms.
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Highlights 

•	 Multi-level quality control controls the analytical process at different target values 
•	 Multi-level quality control may show correlation between different quality control levels
•	 Hotelling’s T² statistic is used to create a multivariate control chart for laboratory tests
•	 Multivariate control charts account for correlations between multiple quality control levels
•	 The Multivariate control charts are more resistant to false alarms than univariate control charts

Introduction

Internal quality control (iQC) is an essential ele-
ment of modern laboratory medicine. This statisti-
cal technique, developed in the context of indus-

trial manufacturing by W. Shewhart in the 1930s, 
was introduced into clinical laboratories by Levey 
and Jennings in the early 1950s (1,2).
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The principle of iQC is to verify the stability of the 
process by repeatedly sampling production over 
time. If the samples do not statistically differ from 
the assigned tendency and dispersion parameters, 
the process is considered to be "in-control" (IC) 
and remains operational; otherwise, with an error 
probability α (generally set at 5%), it is “out-of-con-
trol” (OC) and thus it is stopped and revised. 

The fundamental tool of iQC is the control chart 
(CC), which is an ordered sequence or time-series 
plot of values from the sampled products. In order 
to be effective to discriminate IC from OC, the CC 
must have a unique target and a unique source of 
variation. Thereby, the current state of the process 
can be shown as a deviation from the target meas-
ured in respect to its natural variability. 

In an analytical process, the products are repre-
sented by measurements of the biological param-
eter in real samples. However, under these condi-
tions, the measurement presents a frequency dis-
tribution in relation to the differences between 
and within the individuals from which the samples 
are taken. To overcome this drawback (see Note 1 
in Supplementary Material 1), the Levey-Jennings 
iQC removes the component of biological variabil-
ity by restricting the process control to few signifi-
cant values within the expected range of the 
measurand (2). To this end, it has adopted the 
analysis of specifically chosen or prepared sam-
ples, replicating the principle already adopted for 
the external quality assessment (EQA) in laborato-
ry medicine before the iQC (3). This procedure, 
that controls the analytical process at different tar-
gets, is called multi-level quality control (MLQC).

The statistical approach to processing and analyz-
ing Levey-Jennings iQC is univariate, as the results 
of each MLQC level are individually controlled (uCC). 
However, it should be noted that the analytical pro-
cess measuring the MLQC is unique, and thus there 
is a potential relationship between the behavior of 
individual uCCs. In other words, the various levels of 
the biological parameter to which analytical pro-
cess control is applied can be considered as differ-
ent characteristics of the same product.

In industrial contexts, the correlation between dif-
ferent characteristics of the same product, each in-

dividually subject to quality requirements and all 
contributing to the quality of the final product, is 
well-known and has been addressed by multivari-
ate statistical analysis introduced by H. Hotelling 
since the 1940s (4,5). This type of approach is logi-
cally appropriate for MLQC, and the purpose of 
this work is to present an application of multivari-
ate control chart based on the Hotelling’s T2 statis-
tic (mCC) to a laboratory diagnostic test.

The first part of the paper, detailed in the Materials 
and methods section, covers the construction of 
the multivariate quality control statistics T2, which 
is a generalization of the univariate case connect-
ed with the chi-square statistics. Readers unfamil-
iar with matrix algebra are encouraged to first con-
sult Note 2 in Supplementary Material 1 for the es-
sential concepts and terminology needed to fol-
low the discussion. The second part, in the Results 
section, presents calculations based on a real labo-
ratory dataset. An electronic spreadsheet provid-
ed in Supplementary Material 2 allows readers to 
simulate data and replicate the calculations, or in-
put their own data for further exploration.

Materials and methods

Representation of multivariate data

The purpose of multivariate analysis is to handle 
MLQC using a single mCC. To understand how this 
is possible, think of product quality as resulting 
from individual quality characteristics, just as we 
usually perceive as a unique movement in the 
space the displacement of an object along each of 
the three directions.

It is important to note that this “unitary” treatment 
assumes that individual characteristics are related 
to each other, i.e., correlated. This raises two sig-
nificant questions: 1) whether a single OC quality 
necessarily determines that the entire product is 
OC, and 2) how possible it is to correct a single 
characteristic without affecting the others, or rath-
er, how plausible it is that a single characteristic 
can be truly OC if the others it is correlated with 
are not.
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Consider p as the number of characteristics ob-
served on a given product. If each one is expressed 
by a number of variables, then our object can be 
identified by a set of p-coordinates, known as a 
vector, always indicated by a bold symbol like  as 
in equation (Eq.) 1 of Table 1. It is intuitive that if p 
= 2 or p = 3, the vector can be visualized as a point 
in the plane or space, respectively. 

If a number m of p-dimensional observations are 
obtained, they can be collectively represented as 
an array of numerical data known as a matrix (Eq. 
2, Table 1). Thus, a matrix is the representation of 
the coordinates of a p-dimensional scatter plot, 
where each row is a single observation and each 
column represents a variable or characteristic.

Multivariate normal distribution

The probability density function (pdf) of the nor-
mal distribution for a random variable is known to 
depend on the observation value , the population 
average μ and variance σ2 as in Eq. 3, Table 1. Spe-
cifically, if the exponent term is properly arranged 
(Eq. 4, Table 1), it yields d2, which measures the 
standardized unidimensional quadratic distance 
of a value from its mean. 

This term is suitable for generalization to p-varia-
bles of a matrix in order to account for the correla-
tion between them. The result is D2, the square of 
the generalized distance (Eq. 5, Table 1) (6). Accord-
ingly, the pdf of the univariate normal can be ex-
tended to the multivariate case as in Eq. 6 of Table 1. 

Thus, three terms are necessary to calculate D2 (Eq. 
6, Table 1):

1. (x-μ) the difference of vectors representing the 
coordinates of observation  and the vector of 
the means of p variables 

2. (x-μ)' the transpose of the differences of vectors 

3. Σ the variance-covariance matrix.

The Σ (Eq. 7, Table 1) has a pivotal role as it repre-
sents the structure of relationship between all the 
p variables, expressed as the variability of each 
variable both to itself as usual (variance, VAR) and 
to each of the other variables it is related with (co-
variance, COV, Eq. 8 in Table 1) (6). 

Note that D2 is a scalar which means it is unidimen-
sional, therefore the distance of the vector from 
the centroid of its set (or broadly to its distribution) 
is synthesized by a single quantity regardless of 
the p dimensions it captures. 

Hotelling’s T2 statistic and control limit

As the population parameters μ and σ2 can be re-
placed by their estimates x and s2 based on a sam-
ple of n univariate observations, the Student’s t 
statistic measuring the significance of a deviation 
from the mean can be expressed in quadratic form 
(t2) as a percentile of the F distribution with 1 and 
n-1 degrees of freedom (Eq. 9, Table 1) (6).

Now, replacing μ and Σ with their sample esti-
mates x and S (Eq. 9, Table 1), respectively, t2 can 
be extended to the multivariate case as d2 to ob-
tain for n = 1(a single replicate for each of the m 
multivariate observations) the Hotelling’s T2 statis-
tic that follows the F distribution with p and m-p 
degrees of freedom (Eq. 11, Table 1) (5). Therefore, 
the 1-α percentile of the same distribution is the 
critical value for the T2 statistic at significance level 
α, i.e., the upper control limit (UCL) for the mCC 
(Eq. 12, Table 1) (6). 

Note that Hotelling’s mCC lacks a lower control 
limit (LCL): in a p-dimensional space, it does not 
make sense to consider a variation “above” or “be-
low,” but only a deviation from the centroid of the 
set. Therefore, any deviation from the mean vector 
results in an increase in T2 regardless of the par-
ticular direction taken.

Estimation of the variance-covariance matrix

For m individual observations (n = 1), different esti-
mators S can be used, each having its own distri-
bution from which to take the 1-α percentile (7).

Among them, the estimator by Holmes and Mer-
gen, SHM, based on successive overlapping differ-
ences (Eq. 13, Table 1), has the advantageous char-
acteristics of being unbiased and sensitive to both 
step and progressive shifts of the mean vector (7). 
This is possible as the difference between the m-th 
and the next observation allows retain some 
memory of the previous state of the process, 
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Equation Formula Description

1 x = [x1   ...   xp] Vector of 1 observation per p variables

2 x = 
x1,1   ...   x1,p

xm,1   ...  xm,p

... ...... Matrix of m observations per p variables

3 f(x) = 1

2πσ2
e

1
2

x – μ
σ–

2

Normal univariate probability density 
function

4 d2 = 
x – μ

(x – μ)(σ2)-1(x – μ)σ
2

= Standardized univariate quadratic distance

5 D2 = (x – μ)’∑-1(x – μ)
Standardized multivariate quadratic 

distance

6 f(x) = 1
(2π)p/2|∑|1/2

e
1
2

– (x – μ)’∑-1(x – μ) Normal multivariate probability density 
function

7 COV(xi,xj) = σ2
xi,xj = rxi,xj σ2

xi σ2
xjn

∑(xi – xi)(xj – xj) = Covariance

8 ∑ = 
σ2

x1
      ...   σ2

x1,xp

σ2
xp,x1

   ...  σ2
xp

σ2
x1

      ...   rxp,x1
σx1

σxp

rxp,x1
σxp

σx1
   ...          σ2

xp
... ... ......... ...= Variance-covariance matrix

9

... ...x = = 

(x1,1  + ... + xm,1)

(x1,p  + ... + xm,p)

  m x1

xp  m

Estimate of vector of means

10 t2 = 
x – μ (x – μ)(x – μ)
s/√n s2/n

2
= = n(x – μ)(s2)-1(x – μ)~F1,n–1 Quadratic Student’s t statistic

11 T2 = (x – x)’S-1(x – x)~
p(m – 1)

(m – p)
Fp,m–p Hotelling’s T2 statistic

12 UCL = p(m – 1)(m – p)-1F1–α,p,m–p
Upper control limit (UCL) of Hotelling’s 

T2-based multivariate control chart

13 SHM= (2m – 2)-1 V' V Holmes-Mergen’s estimator of 
variance-covariance matrix

14 T2
HM= (x – x)’S-1  (x – x)~(m – 1)2m-1B1–α,p/2,(q–p–1)/2HM

Hotelling’s T2 statistic with Holmes-Mergen 
estimator of variance-covariance matrix

Symbols: σ2 – population variance (parameter). p – multivariate variables. V – vector of successive overlapped differences. 
μ – population average (parameter). n – univariate sample size. s2 – sample variance (estimate). x – sample average (estimate). 
m  – multivariate sample size. α – type I error. rxi,xj

 – correlation coefficient. B1-α,p/2,(q-p-1)/2 – 1-α percentile of Beta-distribution with 
p/2 and (q-p-2)/2 degrees of freedom, q = 2(m-1)2 (3m-4)-1. F1-α,p,m-p – 1-α percentile of F-distribution with p and m-p degrees of 
freedom.

Table 1. Equations and formulae used for calculations
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which is commonly ignored in memoryless charts 
like Hotellings’ T2 and Shewart-type (and, by the 
way, the reason to implement runs rules that cap-
ture patterns and trends). 

In this estimator, (2m-2)-1 is a constant, V is the ma-
trix of m-1 overlapping differences, and V’ is the 
transpose of V (see Note 2 in Supplementary Ma-
terial 1 for and explanation of transposition). When 
it is used SHM, T2

HM is equal to (m – 1)2m-1 times the 
1-α percentile of the beta distribution B with pa-
rameters p/2 and (q – p – 1)/2, where q is a con-
stant (Eq. 14, Table 1) (7).

It must be noted that in industrial contexts, SHM is 
calculated through retrospective analysis of histor-
ical process data (HDA) collected during start-up 
stage or phase I of control (5,8). Actually, Levey-
Jennings’ iQC represents phase II of control (i.e., fu-
ture control stage) as the target value and its ac-
ceptance limits are already provided by the MLQC 
manufacturer that conducts the phase I. As MLQC 
is used for uCC, this information is incomplete for 
the mCC as it lacks the covariance between con-
trol levels. Therefore, to compute SHM, phase II data 
collected in the laboratory over at least 6 months 
can be appropriately used as a pseudo-HDA (9).

Integration of analytical performance 
specification

The natural limits of process variability do not nec-
essarily coincide with the limits imposed by the di-
agnostic use of the test. This reference for the reli-
ability of the test need is represented by the ana-
lytical performance specifications (APS) (10). In or-
der to use the APS as adjunctive control limits 
within the mCC along with the UCL, we consider  
APS = x + δ as a tolerable deviation from the cen-
troid of the process, where δ = dx. In vector terms:

... ... ...

x1

xp

x1 + d1x1δ1

δp

xAPS = x + δ = + =
xp + dpxp

(Eq. 15).

Thus:

... ......

x1

xp

x1 + d1x1
xAPS – x = dAPS = = =–

xp + dpxp

d1x1

dpxp

...
x1

xp

= d  if d1= ... = dp

(Eq. 16),

where d is a scalar that represent the APS if the 
same value is used for all the p variables (otherwise, 
it is necessary to use the vector where each row 
represents the value of APS specified for the given 
level of the MLQC). From Eq. 16 it follows that:

T2
HM (APS) = (dAPS)’S-1

   (dAPS)HM 
 

(Eq. 17).

Data analysis

The data for generating the Hotelling’s T2 mCC 
were obtained from the analysis of the MLQC for 
the immunoenzymatic assay for the determina-
tion of the antiepileptic drug levetiracetam in plas-
ma (Ark Diagnostics, Fremont, USA), performed on 
ILab Taurus instrumentation (Werfen, Milan, Italy) 
at the clinical pharmacology laboratory of the Uni-
versity Hospital Policlinico Umberto I of Rome.

The MLQC (provided by the same manufacturer of 
assay reagents) consists of p=3 control levels with 
target nominal concentrations of 7.5 μg/mL for 
QC1, 30 μg/mL for QC2, and 75 μg/mL for QC3. As 
batch analysis is carried out for this drug, with at 
least two batches per week of no more than 10 
samples each, the MLQS is analyzed at the begin-
ning of each run. The collected data refer to the 
period from March 1 to August 14, 2024, and con-
sist of m = 84 triplets of values. 

For the retrospective phase I analysis, the pseudo-
HDA dataset was created with the MLQC results 
from the period March 1 to June 28, 2024, consist-
ing of m = 59 triplets, and used to estimate μ (see 

https://www.biochemia-medica.com/assets/images/upload/Clanci/35/Supplementary_files/02_Ialongo_Supplementary_material_1.pdf
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Note 3 in Supplementary Material 1) and SHM. The 
data from June 1 to August 14, 2024, consisting of 
m = 25 triplets, were used for phase II analysis. For 
simplicity, in this work, it was assumed that the 
MLQC was centered on the phase I means and that 
SHM remained unchanged in phase II (consequent-
ly, and also for simplicity of presentation, the mCC 
for SHM was omitted).

For each phase of the analysis, the bivariate Pear-
son linear correlation (r) was evaluated for statisti-
cal significance using the t-test with n-2 degrees of 
freedom (H0: r = 0 vs. H1: r ≠ 0), setting P-value < 
α/p = 0.05 / 3 = 0.017 for multiple comparisons. An 
analysis of the bivariate correlation as conse-
quence of autocorrelation in the MLQC dataset is 
provided in the Note 4 of Supplementary Material 
1. The multivariate normality was assessed with 
Mardia’s test for skewness and kurtosis.

The value of APS was calculated using Fraser’s 
pharmacokinetic model (APSpk):

APSPK(LEV) = CV ≤ 0.25 (      – 1)(     + 1)-1
τ
ω

2 2τ
ω

(Eq. 18),

where CV is the coefficient of variation, ω is the 
dosing interval, and τ is the average half-life of the 
drug (11). The minimum acceptable level was set 
to 1.5 times the APS (12).

All calculations were performed using Microsoft 
Excel 2010 (Microsoft Corporation, Redmond, 
USA), except for Mardia’s test, which was executed 
using the online tool at WebPower (13). An exam-
ple spreadsheet with calculations is provided with-
in Supplementary material 2 (see Note 5 for de-
tails). The flowcharts of phase I and II data analysis 
are outlined in Figure 1.

Results

Bivariate correlation and multivariate 
normality

Phase I and II data are summarized in Table 2. As 
noted, the three levels of the MLQC are correlated 
with each other in both phases with r > 0.6. This 
correlation was not an artefact of isolation of data 
components from an autocorrelated series, as 
shown in Note 4 in Supplementary Material 1.

Phase I Phase II

Sample size (triplets, m) 59 25

QC1 (ng/mL) QC2 (ng/mL) QC3 (ng/mL) QC1 (ng/mL) QC2 (ng/mL) CQ3 (ng/mL)

Average 8.796 31.950 80.249 8.535 31.389 81.742

Standard deviation 0.729 2.347 4.198 0.651 2.646 4.203

CV (%) 8.3 7.3 6.1 7.6 8.4 5.1

r (QC1,QC2) r (QC1,QC3) r (QC2,QC3) r (QC1,QC2) r (QC1,QC3) r (QC2,QC3)

Linear correlation 
(Pearson) 0.749* 0.719* 0.617* 0.789* 0.630* 0.739*

b z P-value b z P-value

Mardia’s test of 
multivariate kurtosis 0.827 8.129 0.616 1.316 5.265 0.873

Mardia’s test of 
multivariate skewness 15.066 0.046 0.963 12.964 - 0.910 0.363

*P-value < 0.017 (H0: r = 0 vs. H1: r ≠ 0)

Table 2. Descriptive analysis, Pearson’s bivariate linear correlation, and multivariate normality (Mardia’s test) of the multi-level qual-
ity control data for the for the levetiracetam assay in phase I (pseudo-HDA) and phase II of real-time quality control

https://www.biochemia-medica.com/assets/images/upload/Clanci/35/Supplementary_files/02_Ialongo_Supplementary_material_1.pdf
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Figure 1. Flowchart of set-up (phase I) and application (phase II) of Hotelling’s T² multivariate control chart (mCC) for the multi-level 
quality control (MLQC). The diagrams summarize what is described in the Materials and methods. In phase I, historical data are ana-
lyzed retrospectively to derive the variance-covariance matrix and mean vectors needed to calculate T², with the aim of verifying 
their bivariate correlation and multivariate normality. Simultaneously, the percentile of the T² distribution is calculated to establish 
the upper control limit (UCL), as well as the maximum acceptable deviation according to the analytical performance specification 
(APS). In phase II, the covariance matrix and mean vectors are used to calculate the T² of the current MLQC, which is then compared 
with the UCL and APS values to determine the process status and to review or release the results.  

Similarly, the datasets used for phase I and phase II 
analyses do not significantly deviate from multi-
variate normality.

Mean vector and covariance matrix

The vector of means x and its transpose x’ estimat-
ed from the pseudo-HDA data are the following:

YES

RUN the p level of the
m-th MLQC

COLLECT m long-term
MLQC data (≥ 6 months)

for p control levels

APPLY the Hotelling’ s T2

multivariate control chart
(mCC)

SET-UP the Hotelling’ s T2

multivariate control chart
(mCC)

COMPUTE the vector x
for the MLQC

CALCULATE the actual
T2 and plot it on the

mCC

 T2 ≤ UCL

 T2 ≤ APS

NO

NO

NO

NO

YES

YES

YES

OC: REVISE
(out-of-control)

IC and OS: REVISE
(in-control but out of
clinical specifications)

IC and IS: RELEASE
(in-control but out of
clinical specifications)

PHASE I PHASE II

are the
MLQC levels

linearly
correlated
(r ≥ 0.6)?

does the
MLQC fit the
multivariate

normally
distribution?

USE a separate Shewhart
control charts for each

level of the MLQC

DEFINE the references
on the mCC

BUILD the MLQC matrix
with p columns and m

rows

ESTIMATE variance-
covariance matrix with
Holmes-Mergen’s SHM

CALCULATE T2 for any
future MLQC data

DEFINE the criterin for
the maximum allowable

deviation od T2

PLOT the upper
control

limit (UCL)

PLOT the analytical
performance

specification (APS)

Start Phase II

COMPUTE the mean
vector x’ and the

vector of means x

FIND the 1-α
percentile of the

B distribution
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x = 
xQC1
xQC2
xQC3

= ; x'= [8.796   31.950   80.249]
8.796

31.950
80.249

(Eq. 19).

For the estimation of SHM and its inverse SHM
-1, the 

results are:

SHM = ; 
0.385
0.992
1.736

0.992
4.684
7.028

1.736
7.423
21.665

S-1
HM = 

5.794
-1.076
-0.095

-1.076
0.667

-0.142

-0.095
-0.142
0.103

(Eq. 20).

Upper control limit

The percentile 1 − α of B-distribution for α = 0.05, 
p = 3, and q = 39 corresponds to:

UCL0.05 = (m – 1)2m-1B0.95,1.5,17.5 = 57.017 × 0.290

              = 16.523
(Eq. 21).

This represents the limit value for the chart relative 
to the running state (i.e., within ±2 sd of the uni-
variate chart). Therefore, if T2HM > 11.301, the ana-
lytical process is OC.

Analytical performance specifications

Based on Eq. 18, with a dosing frequency of twice 
daily (ω = 12) and a median half-life of 8 hours (τ = 
8), the APSpk(LEV) is calculated to be 0.12. Substi-
tuting this value into Eq. 16 yields a dAPS for mini-
mum acceptability equal to:

dAPS = d
xQC1
xQC2
xQC3

= (1.5 × 0.12) × 
1.583
5.751

14.445

8.796
31.950
80.249

=

(Eq. 22).

Thus, by performing the calculations as in Eq. 17 it 
yields:

T2
HM(APS) = 10.376 

(Eq. 23).

If T2
HM > 10.376, the analytical process is outside 

the clinically acceptable specifications i.e. “out-of-
specification” (OS); however, if 10.376 < T2

HM < 
16.523, the analytical process is IC but OS.

Hotelling’s T2 mCC and comparison with 
Levey-Jennings uCC

Table 3 summarizes the OC conditions reported by 
Hotelling’s T2 mCC and the three Levey-Jennings 
uCCs for the MLQC. It is noted that the mCC sig-
nalled no OC, even when it occurred in more than 
one uCC simultaneously. In two cases (one per 
each phase of control), the OS condition corre-
sponds to the OC state for uCCs of QC2 and QC3. 
Figure 2 shows the mCC for phase I and phase II 
data.

Discussion

The use of the multivariate model is aimed at 
aligning the statistical control tool with the struc-
ture of the analytical process, which shows corre-
lated control levels. Correlation, in fact, indicates 
an associative relationship in the data, with a func-
tional explanation in the shared calibration, rea-
gents, volumes, and measurement instruments 
used for all analyses performed for the same test.

From a quantitative perspective, correlation and 
autocorrelation of control data (see Note 4) result 
in a decline in the performance of uCC in identify-
ing true (power) and false (specificity) OC condi-
tions (5,14). This manifests as a delay in the detec-
tion of analytical errors by a single uCC. In the case 
of multiple uCCs, commonly used in MLQC con-
trol, there is also an inflation of α, arising from the 
combined use of univariate control limits, as ex-
plained in Figure 3. Therefore, in the presence of 
correlation or autocorrelation, analytically estimat-
ed performance is falsely better than actual per-
formance.
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Hotelling CC Levey-Jennings CC

run T2 > APS > UCL < LCL or > UCL

QC1 QC2 QC3 Attributable cause

16 4.468 < gross/random error

21 10.636 > > > carryover/dirty cuvettes

22 7.836 > > reagent decay (lot change)

Phase I 24 5.157 < gross error/QC aliquot degradation

30 11.576 > carryover/dirty cuvettes (?)

36 7,804 < QC aliquot degradation

52 6.504 > > carryover/cuvettes cleaning

55 6.321 > QC aliquot degradation

62 9.146 < < QC aliquot degradation (lot change)

Phase II 72 4.907 > gross error/QC aliquot degradation

78 5.953 > QC aliquot degradation

80 15.772 > < gross error (needle obstruction)

CC - control chart. APS - analytical performance specification. UCL - upper control limit. LCL - lower control limit. QC - quality control 
level.

Table 3. Out-of-control and out-of-specification conditions with attributable cause indicated by Hotelling’s T2 multivariate control 
chart and Levey-Jennings univariate control charts for the levetiracetam assay

Figure 2. Hotelling’s T² multivariate control chart (mCC) for the multi-level quality control (MLQC) of the levetiracetam assay. The 
mCC displays the run number on the x-axis and the Hotelling’s T² statistic on the y-axis, which measures the deviation of the vector 
resulting from the three levels of the MLQC from the vector of means (i.e., the centroid of the multivariate normal distribution of the 
data). In phase I, the MLQC data are analyzed retrospectively to find the vector of means, the variance-covariance matrix, the upper 
control limit (UCL), and the analytical performance specification (APS) of the mCC (respectively Eq. 19, Eq. 20, Eq. 21, and Eq. 23 in the 
text); in phase II the information is used to control the state of the analytical process.
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The mCC is an extension of the uCC, where the 
correlational structure of the process is used as a 
tool to measure the degree of deviation in the p 
characteristics that compose it (4). Consequently, 
similar to the uCC, the power of the chart decreas-
es as the analytical error drops below the multivar-
iate equivalent of 1.5 sd (15,16). Unlike the uCC, the 
use of the correlation structure makes the perfor-
mance of the mCC dependent on several addition-
al factors: the choice of S and its accuracy, the size 

Figure 3. Scatterplot of level 1 of quality control (QC1) versus 
level 2 (QC2) of the multi-level quality control (MLQC) of the le-
vetiracetam assay. Panel “a” shows the MLQC data for phase I of 
QC1 and QC2 along with their corresponding univariate control 
levels (gray dashed lines). The QC2 data we shuffled to remove 
correlation with QC1. The overlap of these lines creates the rect-
angular pseudo-bivariate control area (PBCA), outside of which 
lie the out-of-control (OC) values of the process. In the same 
panel, the solid black circle identifies the truly bivariate control 
area (BCA), outside of which lie the out-of-control (OC) values of 
the process. The overlap between BCA and PBCA is maximum 
in this case. Panel ‘b’ shows the same data with correlation (r = 
0.78). As a result, the BCA takes the elliptical shape like data (sol-
id black line) minimizing its overlap within the PBCA, as shown 
by the dashed-grey areas. Filled triangles represent OC for both 
BCA and PBCA, while filled circles represent OC for PBCA only.

of p and n, the concordance of signs among errors 
at the levels, and the concordance between these 
signs and the correlation of the levels where they 
occur (7,15,17).

The impact of these factors must necessarily be 
considered in the application scenario, because 
the sign and magnitude of the error in the p levels 
depend on the specific structure of the analytical 
process (18,19). In modern clinical chemistry, where 
most of the sample processing in automated, sys-
tematic errors tend to prevail and this is congenial 
to the sensitivity and robustness of the SHM (7). 
Considering that with p ≤ 3 and n ≤ 2, which re-
flects the most probable MLQC scenario, the accu-
rate choice of the estimator becomes crucial as 
power of the mCC decreases with concordant 
components of error in the p levels (15). The com-
ponents of errors in the p levels of the MLQC give 
rise to different “across runs” control schemes in 
the univariate model: R4s for discordant errors (Fig-
ure 4), 22s for concordant ones (Figure 5) (20). 

The synthesis of p levels into a single statistic is a 
defining feature of this analytical tool, along with a 
single control level. For correlated data, this avoids 
redundancy in MLQC patterns across uCCs, facili-
tating the interpretation of the process state, es-
pecially when applying runs rules to the mCC (21). 
If the process is OC, the significantly deviant com-
ponents among the p levels can be identified us-
ing the decomposition of T2 as illustrated in Fig-
ures 4 and 5 (22,23). Since this technique is applied 
only when the value is statistically significant for 
the underlying multivariate model, it is in principle 
a post-hoc test that controls the inflation of α. 
Therefore, it cannot be compared with the use of 
multiple uCCs or “across runs” rules that assume 
univariate and independent data (see what de-
scribed in Figure 2 and the results in Figure 5 and 
Figure 6). Furthermore, as a standardized variable, 
T2 can be used directly for performance compari-
sons between processes (similar to the two-sam-
ple t-test) or against a reference value, as proposed 
in this study with the APS, whose results are shown 
in Table 3.

From this demonstrative and didactic approach 
arise the two main simplifications adopted in this 
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Figure 4. Hotelling’s T2 multivariate chart (mCC) and decomposition of T2 vs. R4s “across runs” out-of-control (OC) in multiple Levey-
Jennings univariate control charts (uCC) in the presence of a 2 sd shift with opposite signs in 2 out of 3 levels (QC1, QC2) of multi-level 
quality control (MLQC). The mCC (panel “a”) indicates an OC at run 9, which the decomposition of T2 attributes to QC1 and QC2 (pan-
el “b”); the univariate control charts uCC for QC1 (panel “c”) and QC2 (panel “d”) show an OC for isolated 12s signals, which, having op-
posite signs, jointly generate an OC R4s “across runs”; the uCC for QC3 (panel “e”) does not indicate any OC. The data were simulated 
to obtain correlation r (QC1,QC2) = 0.78, r (QC2,QC3) = 0.70, and r (QC1,QC3) = 0.62, with a precision of CV% (QC1) = 15.0, CV% (QC2) = 
10.0, CV% (QC3) = 7.0. The control limits are represented by the horizontal dashed line and are set for α = 0.05.

study. The first is the use of a pseudo-HDA instead 
of a statistically-planned phase I, calculating m 
based on the desired power for OCs. In fact, the 
sample size is larger for both p and n small, so in 
clinical chemistry it is expected to be m > 100 
(15,17). Therefore, the mere temporal criterion of 
covering the variability of the analytical process 
does not guarantee per se the accuracy of the esti-
mator and, consequently, desired control perfor-
mance. The second simplification assumes the sta-
bility of the process correlation structure to avoid 
introducing an additional multivariate tool, name-
ly the generalized variance chart. While this helps 

the reader focus on the basics of multivariate anal-
ysis, it prevents a rigorous verification of the as-
sumption of consistency between phase I and 
phase II of the mCC structure. Moreover, especially 
when m = 1, the change in S delivers information 
on the state of control of the process as some kind 
of errors tend to alter the structure of correlation. 

Collectively, these limitations make the application 
results of this study, such as those in Table 3, valid 
only as proof of the feasibility of the methods dis-
cussed. The reader is invited to take them into 
careful consideration if aiming at replicating this 
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Figure 5. Hotelling’s T2 multivariate chart (mCC) and decomposition of T2 vs. 22s “across runs” out-of-control (OC) in multiple Levey-
Jennings univariate control charts (uCC) in the presence of a 2sd shift with the same sign in 2 out of 3 levels (QC1, QC2) of multi-level 
quality control (MLQC). The mCC (panel “a”) indicates an OC at run 6, which the decomposition of T2 attributes to QC1 but not to QC2 
(panel “b”); the uCC for QC1 (panel “c”) and QC2 (panel “d”) show an OC for isolated 12s signals, which, having the same sign, jointly 
generate an OC 22s “across runs”; the uCC for QC3 (panel “e”) does not indicate any OC. The data were simulated to obtain correlation 
r (QC1,QC2) = 0.78, r (QC2,QC3) = 0.70, and r (QC1,QC3) = 0.62, with a precision of CV% (QC1) = 15.0, CV% (QC2) = 10.0, CV% (QC3) = 
7.0. The control limits are represented by the horizontal dashed line and are set for α = 0.05.

experience, and mostly, when considering the re-
sults in Table 3. Indeed, in the absence of a rigor-
ous statistical performance analysis, the opposing 
behavior of the two control systems in terms of re-
ported OC cannot serve as evidence of greater 
specificity or lower power of the mCC. Actually, it 
only proves the existence of a difference and the 
need to investigate it further analytically.

A final consideration concerns the arbitrariness of 
the test chosen as the model for applying the 
mCC. This work was motivated by the impression 
of some degree of redundancy in MLQC patterns 
observed during routine inspection of uCCs. The 

incidental discovery of correlation, rather than its 
systematic investigation in analytical quality data, 
demonstrates that this phenomenon, its conse-
quences, and the tools to control it, are not part of 
the laboratory professional’s knowledge base and 
quality routine. It suffices to note that references 
on multivariate quality in laboratory medicine in 
the literature are few and confined to a timespan 
of a decade (19,24-26). Whether this reflects the 
marginality of the subject is difficult to say. How-
ever, the methodological complexity imposed by 
multivariate methods cannot serve as a valid ex-
cuse if, as J.H. Livesey aptly stated in 2005, “now, 
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Figure 6. Hotelling’s T2 multivariate chart (mCC) and generalized variance chart (GV) vs. 41s “across runs” out-of-control (OC) in mul-
tiple Levey-Jennings univariate control chart (uCC) in the presence of a 1sd shift with the same sign in 2 out of 3 levels (QC1, QC2) 
of multi-level quality control (MLQC). The mCC, (panel “a”) indicates no OC, however the GV (panel “b”) shows a value at the control 
limit at run 11 and an OC at run 12; the uCC for QC1 (panel “c”) and QC2 (panel “d”) show consecutive 11s signals at runs 11 and 12, 
which, having the same sign, jointly generate an OC 41s “across runs”; the uCC for QC3 (panel “e”) does not participate in the forma-
tion of the “across runs” pattern. The data were simulated to obtain correlation r (QC1,QC2) = 0.78, r (QC2,QC3) = 0.70, and r (QC1,QC3) 
= 0.62, with a precision of CV% (QC1) = 15.0, CV% (QC2) = 10.0, CV% (QC3) = 7.0. The control limits are represented by the horizontal 
dashed line and are set for α = 0.05.

since digital computers are almost universally 
available, it is more efficient to base QC proce-
dures on the most powerful and selective statisti-
cal algorithms available” (26).

In conclusion, this work demonstrates the feasibil-
ity of implementing Hotelling’s T2 mCC for iQC in a 
laboratory test where the correlation between 
MLQC levels has been proven. The chart, which al-
lows monitoring a single statistic against multiple 
control levels, has the potential to streamline the 

management of laboratory analytical processes. 
To put this approach into practice, it is essential to 
recognize it as an evolution of the quality para-
digm beyond the single dimension drawn by Lev-
ey and Jennings. This is possible, if not necessary, 
in an era that actively promotes the statistical ex-
pertise of clinical laboratory specialists and gives 
them means to leave the comfort zone of univari-
ate concepts.
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