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Highlights

- Inflammatory cytokines stimulate the oxidation of atherogenic lipoproteins

- Dyslipidemia triggers transformation of monocytes toward proinflammatory phenotype

« Monocytes and macrophages participate in plaque formation and post rupture events

« Surface marker G-C chemokine receptor type 2 enables monocytes migration into the subendothelial layer

Abstract

Atherosclerosis is an active interaction between lipoproteins and inflammatory cells. Monocytes and macrophages are the most important immune
cells involved in the process of atherosclerosis. They interact with atherogenic lipoproteins, in particular low density lipoprotein (LDL) cholesterol
and lipoprotein(a) (Lp(a)). The increased concentration of the LDL cholesterol and Lp(a) accelerates the polarization of monocytes and macrophages
toward proinflammatory phenotype and the formation of the foam cells. These cells then release large quantities of inflammatory cytokines that sti-
mulate the oxidation of atherogenic lipoproteins that are even more atherogenic and contribute to the formation of foam cells and the secretion of
the pro-inflammatory cytokines, thus creating a vicious circle. Surface marker C-C chemokine receptor type 2, expressed on monocytes/macropha-
ges, enables their adhesion and migration into the subendothelial layer. The rupture of the atherosclerotic plaque on one hand, and the ability of the
oxidized LDL cholesterol and Lp(a) to trigger arterial thrombosis by different mechanisms on the other hand, result in acute cardiovascular event.
Here, we summarize the role of the monocytes and macrophages in atherosclerosis and explore the influence of LDL cholesterol and Lp(a) on mo-
nocytes and macrophages during the entire process of atherosclerosis, from its initiation to progression.
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Introduction

Atherosclerosis with its clinical consequences, es-  has been considered as a passive process of lipids
pecially ischemic heart disease, cerebrovascular  deposition in the vascular wall with the conse-
diseases and peripheral arterial disease, is one of  quent reduction of the vascular lumen. The process
the most common causes of morbidity and mortal-  of the formation of the atherosclerotic lesions be-
ity (1). For more than three decades atherosclerosis ~ gins with impaired function of the endothelium
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and continues with morphological changes such as
the formation of fatty streaks, followed by the de-
velopment of atherosclerotic plaques and their
rupture resulting in acute cardiovascular event (2).
Since inflammation is actively involved in all phases
of the atherosclerotic process, atherosclerosis can
be considered as a low-grade lifelong active in-
flammatory process (3). Monocytes are the most
important cells of the immune system involved in
the process of atherosclerosis. The link between
monocytes and atherosclerosis is unequivocal, and
an increased number of monocytes is causally re-
lated to the complications of atherosclerosis (4).
Mobilisation of monocytes into the subintimal
space starts as early as in childhood and fatty
streaks can be present already in adolescents and
young adults (5). After infiltration into the endothe-
lium, monocytes differentiate into macrophages,
which can be either pro-inflammatory (M1) or anti-
inflammatory (M2) (6). M1 macrophages, by secret-
ing pro-inflammatory cytokines such as interleukin
(IL)-1B, IL-6 and tumor necrosis factor-a (TNF-a),
contribute to the accelerated growth of the athero-
sclerotic plaque and, in the advanced stage, to its
greater instability and possibility of rupture, result-
ing in an acute cardiovascular event. On the other
hand, M2 macrophages, by secreting anti-inflam-
matory factors such as IL-1 receptor (IL-1R) antago-
nist, IL-10 and collagen, contribute to a slower pro-
gression of atherosclerosis and greater stability of
the atherosclerotic plaque, thereby reducing the
possibility of its rupture and occurrence of an acute
cardiovascular event (7). However, the role of
monocytes and macrophages in atherosclerosis is
not solely limited to the growth and stability of the
atherosclerotic plaque. Monocytes and mac-
rophages also participate in the regulation of the
coagulation-fibrinolytic system, hence their impact
is also important in the case of the eventual rup-
ture of the atherosclerotic plaque.

Macrophages and smooth muscle cells within the
atherosclerotic plaque oversecrete tissue factor
(TF) into the blood flow. Tissue factor initiates acti-
vation of the extrinsic coagulation pathway, which
leads to thrombus formation and fibrin deposition
in the intima (8). Monocytes are also capable of se-
creting plasminogen activator inhibitor (PAIl) 1 and
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2, as well as tissue type plasminogen activator (t-
PA) and urokinase type plasminogen activator (u-
PA), which suggests that monocytes can control
the expression of plasmin on their surface (9). In
this way, monocytes and macrophages influence
both, the tendency of the atherosclerotic plaque
to rupture, as well as the eventual thrombotic
events in the ruptured atherosclerotic plaque. By
secreting thrombogenic and/or fibrinolytic activa-
tors and/or inhibitors, they can significantly affect
the occurrence of acute cardiovascular events.

Dyslipidemia, in particular increased concentra-
tions of low-density lipoprotein (LDL) cholesterol
and also lipoprotein (a) (Lp(a)), which is a lipid risk
factor that, independently of LDL cholesterol con-
centration, increases the risk of future cardiovascu-
lar events, is influenced by monocytes/macrophag-
es and thus the atherosclerotic process (10,11).

In the current review, we aimed to shed light on
the influence of LDL cholesterol and Lp(a) on
monocytes and macrophages during the entire
course of the atherosclerotic process. We summa-
rize the influence of monocytes and macrophages
on the endothelial function, the formation of the
atherosclerotic plaque and the events following its
rupture (Figure 1). Interestingly, there is evidence
that monocytes and macrophages play an impor-
tant role in the composition of the formed plaque
which forecasts the tendency for its rupture. More-
over, these cells also participate in post rupture
events and moderate the outcomes which can
vary from a slow progression of the atherosclerotic
narrowing to an acute cardiovascular event.

Monocytes and macrophages

Monocytes constitute 3-8% of all leukocytes in pe-
ripheral blood. They represent the main part of
the innate immune system, which is responsible
for defence against external infections such as
bacterial, viral and fungal, mainly with the help of
phagocytosis. However, for the development of
atherosclerosis their participation in the endoge-
nous inflammatory processes is more important
(12). The link between monocytes and atheroscle-
rosis is unequivocal, as an increased number of
monocytes is causally related to the complications
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Ficure 1. Increased concentrations of lipoprotein (a) (Lp(a)), LDL cholesterol (LDL-C) and consequently oxidized LDL cholesterol (ox-
LDL) trigger increased trans-formation of monocytes to a more proatherogenic subtype (marked with yellow square). These pro-
cesses accelerate the synthesis of the proinflammatory cytokines (marked with yellow square) and reduce the synthesis of the antiin-
flammatory cytokines causing transformation of the macrophages into a proinflammatory subtype (marked with yellow square). This
leads to a faster formation of the unstable atherosclerotic plaque resulting in an acute cardiovascular event. CMs - classical monocyte
CD14**CD16*. IMs - intermediate monocyte CD14**CD16*. NCMs - nonclassical monocyte CD14**CD16*. M1 - inflammatory macro-
phage. M2 - anti-inflammatory macrophage. TNF-a - tumor necrosis factor-a. oxLDL - oxidized LDL cholesterol. LDL-C - low density
lipoprotein cholesterol. Lp(a) - lipoprotein(a). IL-1f - interleukin-1B. IL-10 - interleukin-10. IL-6 - interleukin-6. The figure was created

with BioRender.com.

of atherosclerosis (4). Nevertheless, monocytes
represent a very heterogeneous cell population
that play different roles in the process of athero-
sclerotic lesion formation. The first attempts to
classify monocytes were based only on morpho-
logical criteria, mainly their size and volume, thus
only two groups of small and large monocytes
were identified (13). The development of new
technologies such as flow cytometry and fluores-
cence-activated cell sorting enabled more accu-
rate classification, mainly by identifying the ex-
pression of two cluster of differentiation (CD) sur-
face markers, CD14, which is a lipopolysaccharide
(LPS) receptor, and CD16, which is an Fcylll recep-
tor (14). Based on these two markers, the mono-
cytes are divided into CD14+**CD16" (classical
monocytes (CMs)), CD14**CD16* (intermediate
monocytes (IMs)) and CD14*CD16** (non-classical
monocytes (NCMs)) (15). Several attempts to in-
clude additional surface markers to the conven-
tional CD14- and CD16-based panel indicate large
heterogeneity of the monocyte population (16-
18). However, due to the use of different methods
for determining these markers and different com-
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binations of these markers, the identification of
the new subpopulations of monocytes remains
challenging. Of course, the question persists as to
whether these newly identified subpopulations
truly represent new monocyte phenotypes, or are
solely minimal variations of the existing subpopu-
lations (19).

Classical monocytes

The CMs are inflammatory cells that express high
levels of C-C chemokine receptor type 2 (CCR2) on
their surface and account for more than 90% of
the monocytes (20). These cells secrete large
amounts of inflammatory cytokines such as IL-1, IL-
12 and TNF-a following their release to the sites of
active inflammation under the influence of various
factors from both, bone marrow and splenic reser-
voirs. In addition to their propensity to penetrate
the endothelial barrier and accumulate in the sub-
endothelial space, CMs possess a very pronounced
phagocytic activity (21). The lifespan of CMs is very
short (@approximately 1 day), and only 1% of all CMs
are further transformed into IMs (22).

Biochem Med (Zagreb) 2025,;35(3):030503

3



Ugovsek S. et al.

Influence of lipoproteins on monocytes and macrophages

Intermediate monocytes

Similar to CMs, IMs also express high levels of CCR2
on their surface and exhibit a very high phagocyt-
ic capacity, which is particularly important in elimi-
nating apoptotic cells after myocardium necrosis,
most often in the context of ischemic heart dis-
ease (21). During development and progression of
the atherosclerosis, IMs present a significant
source of reactive oxygen species (ROS) and medi-
ators of inflammation, such as TNF-a and IL-1f3 (23).
Most of the evidence shows that IMs in particular
are directly involved in the progression of the ath-
erosclerotic process, as well as in the acute cardio-
vascular events. The proportion of IMs proved to
be an independent predictive factor for future car-
diovascular events in a group of 951 patients with
and without previously known cardiovascular dis-
ease referred for coronary angiography (24). Simi-
larly, the proportion of IMs was identified as an in-
dependent predictive factor for the first future car-
diovascular event in a group of 229 patients with
known stable coronary disease, independently of
other risk factors including pro-inflammatory cy-
tokines produced in all three subtypes of mono-
cytes (25). Conversely, CMs were found to be an in-
dependent predictor of future cardiovascular
events in 700 patients without clinically evident
cardiovascular disease (26). However, the latter
study was performed only in patients without clin-
ically identifiable cardiovascular disease. Moreo-
ver, the analysis was performed on samples frozen
for up to 15 years, whereas the other two studies
analysed monocytes in fresh samples. Hence, the
controversy might arise from these two obvious
differences between the three studies.

The association between IMs and risk factors for
cardiovascular disease, particularly dyslipidemia is
also in favour of IMs. The proportion of IMs was
significantly higher in patients with increased Lp(a)
compared to those with normal Lp(a) values as
shown in the study on patients with stable coro-
nary disease (27). On the other hand, the propor-
tions of CMs and NCMs were the same in both pa-
tients’ groups (27). However, only the proportion
of IMs, but not the other two monocyte subtypes,
was associated with the oxidized phospholipids

Biochem Med (Zagreb) 2025;35(3):030503

(OxPLs)/apolipoprotein B-100 ratio in the group of
patients with elevated Lp(a) values. Oxidized phos-
pholipids are a well-recognized proinflammatory
marker that also activate monocytes (28).

Nonclassical monocytes

After approximately 4 days, all the IMs in the circu-
lation turn into NCMs and remain in the blood-
stream for up to 7 days (22). In contrast to CMs and
IMs that express CCR2 on their surface, NCMs ex-
press CX3C motif chemokine receptor 1 (CX3CR1).
The latter is primarily expressed on circulating
monocytes, tissue macrophages, and tissue den-
dritic cell populations, but also on T cells and natu-
ral killer cell subsets (29). Nonclassical monocytes
actively and continuously patrol the luminal side
of the vascular endothelium both, at steady state
and during inflammation, and also mediate the re-
moval of damaged endothelial cells from the vas-
culature. In addition, they also secrete large
amounts of anti-inflammatory and wound healing
factors such as IL-1R antagonist, IL10 receptor,
apolipoproteins apoA and apoE, and C-X-C motif
chemokine ligand 16 (CXCL16) (30). Nonclassical
monocytes scavenge and accumulate lipopro-
teins, including the most proatherogenic oxidized
lipoproteins, from the vessel wall. Even more im-
portant, their number increases in response to the
increased concentration of cardiovascular risk fac-
tors, in particular the OxPLs (31). In the absence of
NCMs, the number of pro-inflammatory mono-
cytes and subsequently the macrophages in-
crease, which leads to faster progression of the
atherosclerosis (32).

Macrophages

After entering the vessel wall, monocytes can dif-
ferentiate into macrophages. Depending on the
balance between their pro-inflammatory or anti-
inflammatory properties, macrophages are classi-
fied as M1 macrophages or M2 macrophages, re-
spectively. Even though such a classification seems
to be oversimplified, it helps us to define the char-
acteristics of the macrophages, which can vary
continuously between both endpoints, i.e. the M1
and M2 phenotypes. Having said that the pheno-
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type of the macrophages is also highly dependent
on the influences from their microenvironment.
Therefore, the macrophages are most commonly
referred as M1- or M2-like macrophages, more ac-
curately reflecting their heterogeneity (33). The M1
macrophages substantially express CD86 and
CD80 along with major histocompatibility com-
plex class Il (MHC Il) on their surface, which ena-
bles the antigen presentation and subsequent ac-
tivation of the T cells. Interferon (INF)-y, TNF-a and
LPS are the most common activators that direct
the polarization of the naive (M0) to M1-like mac-
rophages. Upon their polarization, M1-like mac-
rophages secrete larger amounts of TNF-q, IL-1(3,
IL-6, IL-12, IL-23 and ROS (34). On the other hand,
the most common activators of M2-like mac-
rophages are IL-4, IL-10 and IL-13. The M2-like mac-
rophages secrete larger amounts of IL-1R antago-
nist, IL-10, transforming growth factor 3 (TGF-p), as
well as other cytokines and chemokines (35).

Monocytes and macrophages in the
initiation of atherosclerosis

Endothelial dysfunction is an early indicator of
atherosclerosis, a systemic vascular disease associ-
ated with reduced synthesis of nitric oxide, which
participates in arterial dilation. Endothelial dys-
function is a merit indicator of the progression of
the atherosclerosis and the risk of coronary events
(36). Impaired endothelial function is not only pre-
sent in patients with evident cardiovascular dis-
ease, it also shows in apparently healthy individu-
als with existing risk factors (37,38). Inflammatory
cells, including monocytes and monocyte-derived
macrophages, are extremely important for the ini-
tiation of the endothelial dysfunction. With the
help of the cell-surface proteins, ie. selectins,
monocytes bind weakly and reversibly to cy-
tokine-activated endothelial cells (ECs). The ECs
are activated with the inflammatory cytokines, in
particularly with TNF-q, IL-18 and IL-6 (39). This ac-
tivation induces the expression of the adhesion
molecules such as E- and P-selectin, intercellular
adhesion molecule 1 (ICAM-1) and vascular cell-
adhesion molecule 1 (VCAM-1) that participate in
monocyte migration (40). The adhesion of mono-
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cytes and monocyte-derived macrophages is fol-
lowed by their polarization to one of the subtypes
of monocytes or monocyte-derived macrophages
and their migration into the subendothelial layer
(41).

One of the most important risk factors, which de-
cisively affects the direction of the polarization of
the monocytes and macrophages, is hypercholes-
terolemia, in particular an increased concentration
of the LDL cholesterol. Escate et al. found that ath-
erogenic concentrations of the LDL cholesterol
significantly shorten the time needed for differen-
tiation of the monocytes adhered to ECs into mac-
rophage-like cells (11). This influences both, the
morphology of the monocytes and the level of
their expression of surface marker CD14. The ex-
pression of CD14 was shown to be significantly re-
duced when monocytes are exposed to athero-
genic concentrations of LDL cholesterol in com-
parison with placebo. An increased concentration
of LDL cholesterol does not only accelerate the
polarization of monocytes towards proinflamma-
tory or proatherogenic phenotype, but also in-
creases the production of monocytes in the bone
marrow (42). Interestingly, the concentration of
LDL cholesterol was not related to the number of
leukocytes, but only to the number of monocytes
and granulocytes, independently of the concen-
tration of C-reactive protein (CRP) (42). Compared
to the patients with normal LDL cholesterol con-
centrations, Bekkering et al. showed higher ex-
pression of CCR2 on monocytes from untreated fa-
miliar hypercholesterolemia (FH) patients that per-
sists even after treatment with statins and propro-
tein convertase subtilisin/kexin type 9 (PCSK9) in-
hibitors and ezetimibe if required (43). The reason
for this is persistent hyper responsiveness of the
circulating monocytes or so-called “trained immu-
nity” (43). Given that monocytes have a life span of
several hours to several days, while the treatment
in this study lasted for 12 weeks, the authors sus-
pect the reprogramming of the progenitor cells in
the bone marrow under the influence of an in-
creased concentration of the LDL cholesterol (43).
Progenitor cells in the bone marrow present the
source of the new monocytes in the peripheral cir-
culation. This was further confirmed by demon-

Biochem Med (Zagreb) 2025,;35(3):030503

5



Ugovsek S. et al.

Influence of lipoproteins on monocytes and macrophages

strating that intensive reducing of the LDL choles-
terol below 1.8 mmol/L, does not change the gene
expression of the markers involved in the inflam-
matory and migration process in both, monocytes
and progenitor cells in the bone marrow (42). At
the same time, the CCR2 expression remained un-
changed on both cell types (42). Surface marker
CCR2 is expressed on monocytes/macrophages
and ECs. The interaction of CCR2 with its ligand, i.e.
chemoattractant chemokine ligand 2 (CCL2), ena-
bles the adhesion and penetration of the mono-
cytes/macrophages into the subendothelial space,
allowing the formation of the foam cells (20). In
the CCR2 knock out (-/-) mice, even in the presence
of CCL2, the ability of the monocytes/macrophag-
es to adhere to ECs and migrate into the suben-
dothelial layer is significantly impaired (44).

Lipoprotein(a) is a complex plasma protein that
consists of LDL cholesterol and apolipoprotein
B-100 (apoB) linked to the plasminogen-like
apolipoprotein(a) (apo(a)) via a disulphide bond.
Lipoprotein(a) is suggested to possess several di-
vergent functions. These include proatheroscle-
rotic due to the similarity with LDL cholesterol,
and prothrombotic effects due to similarity be-
tween apo(a) and plasminogen. On the other
hand, the pro-inflammatory effects are mainly due
to OxPLs activating monocytes and ECs (45). A
substantial number of monocytes was shown to
accumulate in the vessel wall in patients with in-
creased Lp(a) values compared to those with nor-
mal values (46). These results suggest that in-
creased values of Lp(a) play an important role in
the local inflammatory process in the vascular wall.
However, there is no evidence from the clinical
studies, as no drugs that specifically lower Lp(a)
are available. Treatment with PCSK9 inhibitors low-
ers LDL cholesterol concentrations by 60% and
Lp(a) concentrations by 20-30%, however it does
not reduce the vessel wall inflammation in pa-
tients previously treated with statins (47). Treat-
ment with specific drugs reduces Lp(a) concentra-
tions by up to 90% and reduces the pro-inflamma-
tory state of circulating monocytes (48). Lipo-
protein(a) is the main carrier of OxPL, which is one
of the most important activators of both, the
monocytes and the ECs. Study by van der Valk et
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al. showed more notable inflammation in the vas-
cular wall of the patients with increased Lp(a) val-
ues in comparison with controls with normal Lp(a)
values (46). They demonstrated that the uptake of
18F-fluorodeoxyglucose, which is an accurate indi-
cator of local atherogenic inflammation, into the
vascular wall is directly proportional to the con-
centration of Lp(a). At the same time, they showed
that areas with greater inflammation coincide with
an increased accumulation of the peripheral blood
mononuclear cells. Interestingly, this was evident
not only in the areas with atherosclerotic lesions,
but also in the apparently unaffected vessel walls
(46). Moreover, the monocytes of patients with in-
creased Lp(a) values secrete larger amounts of the
pro-inflammatory cytokines such as IL-1, IL-6 and
TNF-q, but on the other hand, the secretion of the
anti-inflammatory cytokines such as IL-10, is signif-
icantly reduced. The monocytes from patients
with increased Lp(a) values have also an increased
ability to migrate through the endothelial barrier.
Van der Valk et al. also showed that Lp(a) contain-
ing OxPLs increases the inflammatory response of
the monocytes from patients with normal Lp(a)
values (46). The proinflammatory effects of apo(a)
can be blocked by a specific antibody E06. Finally,
the authors provide evidence on the necessity for
OxPL mediated monocyte activation. The r-apo(a)
that contains bound OxPL is capable of activating
monocytes, whereas nearly identical but mutated
r-apo(a) without the ability to bind OxPL, does not
possess the monocyte activation properties. To
summarize, these data indicate that the OxPLs car-
ried by Lp(a), are obligatory danger signals in elic-
iting the prolonged potentiation of the monocyte
response in vitro (46).

An increased concentration of Lp(a) is also associ-
ated with an increased number of specific sub-
types of monocytes, in particular those with the
pro-inflammatory role in the atherosclerosis pro-
cess. In a cohort of 90 patients with stable coro-
nary disease, Khrystiuk et al. showed that patients
with increased Lp(a) values had a significantly
higher proportion of IMs compared to patients
with normal values (49). More importantly, the Ox-
PLs/apoB ratio was increased in patients with in-
creased Lp(a) values, underpinning the pro-inflam-
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matory role of Lp(a). Additionally, in the group
with increased Lp(a) values, the concentration of
CRP and IL-6 was also higher. Similar to LDL cho-
lesterol, oxidized form of Lp(a), i.e. OxLp(a) is con-
sidered to be even more atherogenic than its na-
tive form. Namely, OxLp(a) increases the synthesis
of ROS through various signalling pathways and
thus increases the permeability of ECs (50). In pa-
tients with type Il diabetes, endothelial function
was more impaired in those with elevated OxLp(a)/
Lp(a) ratio (51). Not only functional but also mor-
phological changes of the endothelium are associ-
ated with the concentration of OxLp(a) rather than
with its native form, i.e. Lp(a) (52).

An increased concentration of Lp(a) does not show
proatherogenic effects only on monocytes/mac-
rophages, but also on ECs. These cells present the
last barrier that monocytes/macrophages have to
overcome to move into the subendothelial space.
Lp(a) triggers pro-inflammatory response of ECs,
which begin to release larger amounts of inflam-
matory cytokines, in particular IL-6 and IL-8. At the
same time, the increased expression of the adhe-
sion molecules such as ICAM-1, E-selectin and
CCR2, strongly increases the transendothelial mi-
gration of monocytes (53). The apo(a) part, which
also contains OxPLs, is responsible for these ef-
fects. The expression of the aforementioned cy-
tokines and selectins increased in both, human
umbilical vein ECs, as well as in coronary artery ECs
under the influence of Lp(a) or apo(a) stimulation
(54,55). Moreover, the increased release of the ad-
hesion molecules from ECs was shown to be de-
pendent on the Lp(a) concentration and the expo-
sure time (54,55). Not only does the increased con-
centration of Lp(a) and in particular apo(a) trigger
the expression of cytokines, selectins and ROS, it
does cause changes in the cytoskeleton of the ECs
as well. These changes lead to greater permeabili-
ty of the ECs and thus facilitate the migration of
the monocytes/macrophages into the suben-
dothelial space (56). Apolipoprotein(a), through its
strong lysine-binding site in KIV(10’), mediates the
increased contraction of the ECs and permeability
via a Rho/Rho kinase/MYPT1-dependent pathway
(56).

https://doi.org/10.11613/BM.2025.030503

Monocytes and macrophages in the
progression of atherosclerosis

After monocytes/macrophages penetrate into the
subendothelial space, they accumulate lipopro-
teins and turn into foam cells, transforming func-
tional changes of the endothelium into morpho-
logical. Foam cells are involved in the formation of
the atherosclerotic plaque, its growth and, in case
of its rupture, in the occurrence of an acute cardio-
vascular event. The most important risk factor for
the formation of foam cells is an increased concen-
tration of lipoproteins, in particular LDL cholester-
ol and Lp(a) (57,58). The formation of the foam cells
results with interweaving of the three processes:
lipid uptake, lipid efflux and cholesterol esterifica-
tion. Increased accumulation of the lipoproteins
and cholesterol esters in macrophages suggests
that lipid uptake and cholesterol esterification
dominate cholesterol efflux (59).

The most important pathway for cholesterol efflux
is provided by the scavenger receptors (SRs),
among which scavenger receptor A (SR-A) and
CD36 stand out, as they contribute between 75
and 90% of the uptake of the modified lipoproteins
(60). Cholesterol efflux from the foam cells occurs
with diffusion and with the help of various trans-
port systems. Under normal circumstances, diffu-
sion is the major contributor to lipoprotein efflux,
while in the case of the increased lipoprotein con-
centration, the main part of the lipoprotein efflux
happens through SR class B type 1 (SR-B1), ATP
binding cassette transporter A-1 (ABCAT) and ATP-
binding cassette sub-family G member 1 (ABCGT1)
(61). Cholesterol from the foam cells can be trans-
ferred by HDL cholesterol or apolipoprotein Al
(apoA1), presenting the first step in reverse choles-
terol transport and one of the possible mecha-
nisms for the atheroprotective role of the HDL cho-
lesterol (62). Esterification is the most important
process for storing cholesterol in all cells, including
in the foam cells that form the atherosclerotic le-
sions (63). Acyl-coenzyme A cholesterol acyltrans-
ferase (ACAT) is an enzyme, responsible for choles-
terol esterification in the macrophages. Its inhibi-
tion in mice reduces foam cell formation and ath-
erosclerosis progression, but has no effect on ath-
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erosclerosis progression in carotid and coronary
arteries in patients (64). Similar to OxLp(a), OxLDL
cholesterol is even more atherogenic than its na-
tive form. This was demonstrated by Ehara et al.
who compared the concentration of OxLDL choles-
terol in patients with acute coronary syndrome, un-
stable and stable angina pectoris and control
group (65). They showed that the concentration of
OxLDL cholesterol is related to the severity of the
coronary atherosclerosis. This association was inde-
pendent of other risk factors, including LDL choles-
terol concentrations. More importantly, the con-
centration of OxLDL cholesterol in atherectomy
specimens was significantly higher in patients with
unstable angina pectoris compared to the patients
with stable coronary disease. In order to prove the
connection between the OxLDL cholesterol and
the foam cells or macrophages, they also com-
pared the surface area of OxLDL positive mac-
rophages between these groups of patients and
showed it was significantly higher in patients with
unstable angina pectoris. The majority of the Ox-
LDL cholesterol is absorbed into macrophages via
the lectin-like oxidized low-density lipoprotein re-
ceptor-1 (LOX-1). Low-density lipoprotein recep-
tor-1 is present on the surface of macrophages, ECs
and smooth muscle cells, suggesting the involve-
ment of the OxLDL in all phases of the atheroscle-
rotic process — from endothelial dysfunction to
rupture of the atherosclerotic plaque and the re-
sulting acute cardiovascular event (66). Further-
more, OXLDL cholesterol can trigger arterial throm-
bosis by activating platelets adhesion and reduc-
ing the fibrinolytic capacity of ECs (67). Arterial
thrombosis is primarily associated with the rupture
of the atherosclerotic plaque, and the release of
large amounts of TF (68). Exposure of TF to blood
initiates the extrinsic clotting cascade, and is con-
sidered to be a major regulator of coagulation (69).

Patients with FH, who in addition to extremely in-
creased LDL cholesterol values, also have in-
creased Lp(a) values, have a higher risk of an acute
coronary event compared to FH patients with nor-
mal Lp(a) values (70). Increased values of Lp(a) are
associated with the composition of the atheroscle-
rotic plaque. In patients with acute coronary syn-
drome requiring percutaneous coronary interven-
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tion optical coherence tomography of culprit le-
sion showed that fibrosus cap thickness was signif-
icantly smaller in those with increased Lp(a) con-
centrations compared to those with normal Lp(a)
concentrations (71). In patients with symptomatic
carotid atherosclerosis, increased Lp(a) concentra-
tion was associated with lipid-rich necrotic core in-
dependently of other risk factors, including LDL
cholesterol concentration (72).

Long-term, i.e. at least 10 years, prospective re-
search showed that the progression of both, carot-
id and coronary atherosclerosis is faster in patients
with higher than in patients with lower Lp(a) con-
centrations (73,74). In patients with higher Lp(a)
concentrations, the lipid-rich necrotic core signifi-
cantly increases and the fibrosus cap thickness de-
creases, which is associated with increased ten-
dency for rupture and a higher probability of arte-
rial thrombosis at the site of the atherosclerotic
plaque rupture. The increase in lipid-rich necrotic
core is most likely related to the pro-inflammatory
properties of Lp(a).

Freshly isolated monocytes from patients with ele-
vated Lp(a) concentrations show three times higher
transendothelial migration capacity compared to
monocytes from control patients (46). At the same
time, their monocytes possess significantly more
scavenger receptors CD36 and SR-A on their sur-
face, which also contributes to significantly higher
uptake of the lipoproteins and faster growth of the
foam cells. At the same time, these monocytes se-
crete larger quantities of the pro-inflammatory cy-
tokines, for example IL-6, TNF-a and IL-13, and sig-
nificantly smaller amounts of the anti-inflammato-
ry cytokine IL-10. This creates a vicious circle that
contributes to a faster formation of more vulnera-
ble atherosclerotic plaques. All these processes are
directly related to higher Lp(a) concentrations (46).
As already mentioned, the pro-inflammatory ac-
tion of Lp(a) is largely due to OxPLs. Several studies
involving more than 30,000 individuals, found that
the concentration of Lp(a) is related to the OxPLs/
apoB ratio and inversely depends on the size of the
apo(a) isoform (75,76). The OxPLs/apoB ratio proved
to be a predictive factor for future coronary events
independent of other risk factors except of Lp(a)
concentration (77). Oxidized phospholipids are rap-
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idly transferred to Lp(a), and become predominant-
ly associated with Lp(a) compared to other apoB-
containing lipoproteins, despite the particle num-
ber of Lp(a) in plasma being generally much lower
than that of the LDL cholesterol (78). This may also
explain why Lp(a) is so much more atherogenic
than the LDL cholesterol (79).

Upon rupture of an atherosclerotic plaque with
many lipid-rich necrotic cores, a large amount of
TF is released, which is stored in foam cells, mono-
cytes/macrophages and smooth muscle cells. At
the same time, a large amount of IL-6, IL.-1 and
TNF-a is released from a plaque, which further in-
creases the production of TF in all the aforemen-
tioned cells (80).

Lipoprotein(a) participates in atherothrombosis
through several mechanisms. As an atherogenic li-
poprotein, Lp(a) interferes with platelet aggrega-
tion, as it can bind to platelet-activating factor
acetyl hydrolase, which degrades and inactivates
platelet-activating factor. This results in reduced
platelet aggregation and activation. When plasmi-
nogen is activated to plasmin by either t-PA or
u-PA action, the resulting enzyme cleaves several
substrates, including fibrin, resulting in dissolution
of the thrombi through fibrinolysis. The thrombo-
genic properties of Lp(a) might be due to the ho-
mology between apo(@) and plasminogen.
Lipoprotein(@) competes with plasminogen for
binding sites on ECs, which inhibits fibrinolysis
and promotes intravascular thrombosis (45). How-
ever, there is no evidence for these speculations,
as Mendelian randomization studies were not able
to confirm the connection between Lp(a) and ve-
nous thromboembolism (81). Namely, it turned out
that not the entire Lp(a), but the apo(a) alone, suc-
cessfully inhibits the fibrinolytic process (82,83).
However, this by no means excludes the role of
Lp(a) in the development of the arterial thrombo-
sis. It rather suggests the involvement of other
mechanisms independent of the plasminogen ac-
tivation. It was shown that Lp(a) inhibits TF path-
way inhibitor and thus accelerates the coagulation
process (84). At the same time, it was also proved
that an increased concentration of Lp(a) stimulates
the formation of PAI-1 in ECs and in this way af-
fects the fibrinolytic activity (85).
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Clinical utility and limitations

Lowering LDL cholesterol with statins is a well-rec-
ognized and one of the most effective strategies
for reducing cardiovascular events (86). However,
at least part of the statin efficacy can be also at-
tributed to their anti-inflammatory effect that is in-
dependent of their lipolytic action (87). Treatment
with PCSK9 inhibitors in patients previously treat-
ed with statins did not further decrease the inflam-
matory parameters, however it substantially re-
duced the inflammation in the vessel wall (88). On
the contrary, treatment with PCSK9 inhibitors sig-
nificantly reduced the concentration of the inflam-
matory parameters in statin naive patients (89).
Treatment with PCSK9 inhibitors decreased Lp(a)
concentration, however only 20-40%. The study
was not designed to examine the impact of the
decrease in Lp(a) on the inflammation in the vessel
wall (89). However, it is difficult to estimate how
much of the reduction in inflammation in the vas-
cular wall is due to the lowering of LDL cholesterol,
and how much is due to the lowering of Lp(a). Al-
though the reduction in the incidence of recurrent
cardiovascular events in studies with PCSK9 inhibi-
tors has been shown to depend on both the re-
duction in LDL cholesterol and Lp(a) concentra-
tions (90). Of course, we cannot precisely separate
the contribution of both. Thus, we cannot precise-
ly determine the contribution of both reductions
in reducing inflammation in the vascular wall,
which is not dependent on a decrease in markers
of inflammation in the blood. Drugs that reduce
Lp(@) by up to 90% are currently in the phase Il of
clinical trial (91). Since the inflammation in the vas-
cular wall is associated with increased Lp(a) values,
we can anticipate that this type of treatment will
also have an additional impact on ameliorating
the inflammatory process in the vascular wall in
patients with increased Lp(a) values that present a
high risk group for future coronary events. Fur-
thermore, it is reasonable to expect that the novel
treatment if started very early at the beginning of
the development of the atherosclerotic process
would be even more effective in preventing the
occurrence of cardiovascular events.

Biochem Med (Zagreb) 2025,;35(3):030503

9



Ugovsek S. et al.

Influence of lipoproteins on monocytes and macrophages

Of course, our review article also has shortcom-
ings. The most important is that we probably do
not have data from randomized trials on the im-
pact of reducing inflammation in the vascular wall
on the incidence of cardiovascular events, and we
probably will not have them, at least in the near
future. Such results would require a randomized
double-blind study that would simultaneously
monitor the impact of reducing inflammation in
the vascular wall and the incidence of cardiovascu-
lar events under the influence of the tested drug.
In the case of patients with increased concentra-
tions of both LDL cholesterol and Lp(a), this would
be much more difficult to implement. Namely, we
would need several groups that, in addition to pla-
cebo, would receive drugs that effectively lower
only LDL cholesterol or Lp(a), and of course their
combination.

Conclusions

Atherosclerosis is no longer considered a passive
process of deposition of lipids in the arterial vessel
wall. It is an active process of interaction between
lipoproteins, in particular the most atherogenic
LDL cholesterol and Lp(a), and inflammatory cells,
mainly monocytes/macrophages. The increased
concentration of the atherogenic lipoproteins ena-
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