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Abstract

Atherosclerosis is an active interaction between lipoproteins and inflammatory cells. Monocytes and macrophages are the most important immune 
cells involved in the process of atherosclerosis. They interact with atherogenic lipoproteins, in particular low density lipoprotein (LDL) cholesterol 
and lipoprotein(a) (Lp(a)). The increased concentration of the LDL cholesterol and Lp(a) accelerates the polarization of monocytes and macrophages 
toward proinflammatory phenotype and the formation of the foam cells. These cells then release large quantities of inflammatory cytokines that sti-
mulate the oxidation of atherogenic lipoproteins that are even more atherogenic and contribute to the formation of foam cells and the secretion of 
the pro-inflammatory cytokines, thus creating a vicious circle. Surface marker C-C chemokine receptor type 2, expressed on monocytes/macropha-
ges, enables their adhesion and migration into the subendothelial layer. The rupture of the atherosclerotic plaque on one hand, and the ability of the 
oxidized LDL cholesterol and Lp(a) to trigger arterial thrombosis by different mechanisms on the other hand, result in acute cardiovascular event. 
Here, we summarize the role of the monocytes and macrophages in atherosclerosis and explore the influence of LDL cholesterol and Lp(a) on mo-
nocytes and macrophages during the entire process of atherosclerosis, from its initiation to progression.
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Highlights 

•	 Inflammatory cytokines stimulate the oxidation of atherogenic lipoproteins
•	 Dyslipidemia triggers transformation of monocytes toward proinflammatory phenotype
•	 Monocytes and macrophages participate in plaque formation and post rupture events
•	 Surface marker C-C chemokine receptor type 2 enables monocytes migration into the subendothelial layer

Introduction

Atherosclerosis with its clinical consequences, es-
pecially ischemic heart disease, cerebrovascular 
diseases and peripheral arterial disease, is one of 
the most common causes of morbidity and mortal-
ity (1). For more than three decades atherosclerosis 

has been considered as a passive process of lipids 
deposition in the vascular wall with the conse-
quent reduction of the vascular lumen. The process 
of the formation of the atherosclerotic lesions be-
gins with impaired function of the endothelium 

mailto:ugovsek.sabina@gmail.comi


Biochem Med (Zagreb) 2025;35(3):030503		  https://doi.org/10.11613/BM.2025.030503   

2

Ugovšek S. et al.	 Influence of lipoproteins on monocytes and macrophages

and continues with morphological changes such as 
the formation of fatty streaks, followed by the de-
velopment of atherosclerotic plaques and their 
rupture resulting in acute cardiovascular event (2). 
Since inflammation is actively involved in all phases 
of the atherosclerotic process, atherosclerosis can 
be considered as a low-grade lifelong active in-
flammatory process (3). Monocytes are the most 
important cells of the immune system involved in 
the process of atherosclerosis. The link between 
monocytes and atherosclerosis is unequivocal, and 
an increased number of monocytes is causally re-
lated to the complications of atherosclerosis (4). 
Mobilisation of monocytes into the subintimal 
space starts as early as in childhood and fatty 
streaks can be present already in adolescents and 
young adults (5). After infiltration into the endothe-
lium, monocytes differentiate into macrophages, 
which can be either pro-inflammatory (M1) or anti-
inflammatory (M2) (6). M1 macrophages, by secret-
ing pro-inflammatory cytokines such as interleukin 
(IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), 
contribute to the accelerated growth of the athero-
sclerotic plaque and, in the advanced stage, to its 
greater instability and possibility of rupture, result-
ing in an acute cardiovascular event. On the other 
hand, M2 macrophages, by secreting anti-inflam-
matory factors such as IL-1 receptor (IL-1R) antago-
nist, IL-10 and collagen, contribute to a slower pro-
gression of atherosclerosis and greater stability of 
the atherosclerotic plaque, thereby reducing the 
possibility of its rupture and occurrence of an acute 
cardiovascular event (7). However, the role of 
monocytes and macrophages in atherosclerosis is 
not solely limited to the growth and stability of the 
atherosclerotic plaque. Monocytes and mac-
rophages also participate in the regulation of the 
coagulation-fibrinolytic system, hence their impact 
is also important in the case of the eventual rup-
ture of the atherosclerotic plaque. 

Macrophages and smooth muscle cells within the 
atherosclerotic plaque oversecrete tissue factor 
(TF) into the blood flow. Tissue factor initiates acti-
vation of the extrinsic coagulation pathway, which 
leads to thrombus formation and fibrin deposition 
in the intima (8). Monocytes are also capable of se-
creting plasminogen activator inhibitor (PAI) 1 and 

2, as well as tissue type plasminogen activator (t-
PA) and urokinase type plasminogen activator (u-
PA), which suggests that monocytes can control 
the expression of plasmin on their surface (9). In 
this way, monocytes and macrophages influence 
both, the tendency of the atherosclerotic plaque 
to rupture, as well as the eventual thrombotic 
events in the ruptured atherosclerotic plaque. By 
secreting thrombogenic and/or fibrinolytic activa-
tors and/or inhibitors, they can significantly affect 
the occurrence of acute cardiovascular events.

Dyslipidemia, in particular increased concentra-
tions of low-density lipoprotein (LDL) cholesterol 
and also lipoprotein (a) (Lp(a)), which is a lipid risk 
factor that, independently of LDL cholesterol con-
centration, increases the risk of future cardiovascu-
lar events, is influenced by monocytes/macrophag-
es and thus the atherosclerotic process (10,11).

In the current review, we aimed to shed light on 
the influence of LDL cholesterol and Lp(a) on 
monocytes and macrophages during the entire 
course of the atherosclerotic process. We summa-
rize the influence of monocytes and macrophages 
on the endothelial function, the formation of the 
atherosclerotic plaque and the events following its 
rupture (Figure 1). Interestingly, there is evidence 
that monocytes and macrophages play an impor-
tant role in the composition of the formed plaque 
which forecasts the tendency for its rupture. More-
over, these cells also participate in post rupture 
events and moderate the outcomes which can 
vary from a slow progression of the atherosclerotic 
narrowing to an acute cardiovascular event. 

Monocytes and macrophages

Monocytes constitute 3-8% of all leukocytes in pe-
ripheral blood. They represent the main part of 
the innate immune system, which is responsible 
for defence against external infections such as 
bacterial, viral and fungal, mainly with the help of 
phagocytosis. However, for the development of 
atherosclerosis their participation in the endoge-
nous inflammatory processes is more important 
(12). The link between monocytes and atheroscle-
rosis is unequivocal, as an increased number of 
monocytes is causally related to the complications 
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of atherosclerosis (4). Nevertheless, monocytes 
represent a very heterogeneous cell population 
that play different roles in the process of athero-
sclerotic lesion formation. The first attempts to 
classify monocytes were based only on morpho-
logical criteria, mainly their size and volume, thus 
only two groups of small and large monocytes 
were identified (13). The development of new 
technologies such as flow cytometry and fluores-
cence-activated cell sorting enabled more accu-
rate classification, mainly by identifying the ex-
pression of two cluster of differentiation (CD) sur-
face markers, CD14, which is a lipopolysaccharide 
(LPS) receptor, and CD16, which is an FcγIII recep-
tor (14). Based on these two markers, the mono-
cytes are divided into CD14++CD16- (classical 
monocytes (CMs)), CD14++CD16+ (intermediate 
monocytes (IMs)) and CD14+CD16++ (non-classical 
monocytes (NCMs)) (15). Several attempts to in-
clude additional surface markers to the conven-
tional CD14- and CD16-based panel indicate large 
heterogeneity of the monocyte population (16-
18). However, due to the use of different methods 
for determining these markers and different com-

binations of these markers, the identification of 
the new subpopulations of monocytes remains 
challenging. Of course, the question persists as to 
whether these newly identified subpopulations 
truly represent new monocyte phenotypes, or are 
solely minimal variations of the existing subpopu-
lations (19). 

Classical monocytes

The CMs are inflammatory cells that express high 
levels of C-C chemokine receptor type 2 (CCR2) on 
their surface and account for more than 90% of 
the monocytes (20). These cells secrete large 
amounts of inflammatory cytokines such as IL-1, IL-
12 and TNF-α following their release to the sites of 
active inflammation under the influence of various 
factors from both, bone marrow and splenic reser-
voirs. In addition to their propensity to penetrate 
the endothelial barrier and accumulate in the sub-
endothelial space, CMs possess a very pronounced 
phagocytic activity (21). The lifespan of CMs is very 
short (approximately 1 day), and only 1% of all CMs 
are further transformed into IMs (22). 

Normal
vessel

Endothelial
dysfunction

Atherosclerotic
plaque

Acute coronary
syndrome

CMs IMs NCMs M1 M2 TNF-α Foam cells

IL-1β IL-10 IL-6 ThrombusLDL-CoxLDL Lp(a)

Figure 1. Increased concentrations of lipoprotein (a) (Lp(a)), LDL cholesterol (LDL-C) and consequently oxidized LDL cholesterol (ox-
LDL) trigger increased trans-formation of monocytes to a more proatherogenic subtype (marked with yellow square). These pro-
cesses accelerate the synthesis of the proinflammatory cytokines (marked with yellow square) and reduce the synthesis of the antiin-
flammatory cytokines causing transformation of the macrophages into a proinflammatory subtype (marked with yellow square). This 
leads to a faster formation of the unstable atherosclerotic plaque resulting in an acute cardiovascular event. CMs - classical monocyte 
CD14**CD16*. IMs - intermediate monocyte CD14**CD16*. NCMs - nonclassical monocyte CD14**CD16*. M1 - inflammatory macro-
phage. M2 - anti-inflammatory macrophage. TNF-α - tumor necrosis factor-α. oxLDL - oxidized LDL cholesterol. LDL-C – low density 
lipoprotein cholesterol. Lp(a) - lipoprotein(a). IL-1β - interleukin-1β. IL-10 - interleukin-10. IL-6 - interleukin-6. The figure was created 
with BioRender.com.
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Intermediate monocytes

Similar to CMs, IMs also express high levels of CCR2 
on their surface and exhibit a very high phagocyt-
ic capacity, which is particularly important in elimi-
nating apoptotic cells after myocardium necrosis, 
most often in the context of ischemic heart dis-
ease (21). During development and progression of 
the atherosclerosis, IMs present a significant 
source of reactive oxygen species (ROS) and medi-
ators of inflammation, such as TNF-α and IL-1β (23). 
Most of the evidence shows that IMs in particular 
are directly involved in the progression of the ath-
erosclerotic process, as well as in the acute cardio-
vascular events. The proportion of IMs proved to 
be an independent predictive factor for future car-
diovascular events in a group of 951 patients with 
and without previously known cardiovascular dis-
ease referred for coronary angiography (24). Simi-
larly, the proportion of IMs was identified as an in-
dependent predictive factor for the first future car-
diovascular event in a group of 229 patients with 
known stable coronary disease, independently of 
other risk factors including pro-inflammatory cy-
tokines produced in all three subtypes of mono-
cytes (25). Conversely, CMs were found to be an in-
dependent predictor of future cardiovascular 
events in 700 patients without clinically evident 
cardiovascular disease (26). However, the latter 
study was performed only in patients without clin-
ically identifiable cardiovascular disease. Moreo-
ver, the analysis was performed on samples frozen 
for up to 15 years, whereas the other two studies 
analysed monocytes in fresh samples. Hence, the 
controversy might arise from these two obvious 
differences between the three studies. 

The association between IMs and risk factors for 
cardiovascular disease, particularly dyslipidemia is 
also in favour of IMs. The proportion of IMs was 
significantly higher in patients with increased Lp(a) 
compared to those with normal Lp(a) values as 
shown in the study on patients with stable coro-
nary disease (27). On the other hand, the propor-
tions of CMs and NCMs were the same in both pa-
tients’ groups (27). However, only the proportion 
of IMs, but not the other two monocyte subtypes, 
was associated with the oxidized phospholipids 

(OxPLs)/apolipoprotein B-100 ratio in the group of 
patients with elevated Lp(a) values. Oxidized phos-
pholipids are a well-recognized proinflammatory 
marker that also activate monocytes (28). 

Nonclassical monocytes

After approximately 4 days, all the IMs in the circu-
lation turn into NCMs and remain in the blood-
stream for up to 7 days (22). In contrast to CMs and 
IMs that express CCR2 on their surface, NCMs ex-
press CX3C motif chemokine receptor 1 (CX3CR1). 
The latter is primarily expressed on circulating 
monocytes, tissue macrophages, and tissue den-
dritic cell populations, but also on T cells and natu-
ral killer cell subsets (29). Nonclassical monocytes 
actively and continuously patrol the luminal side 
of the vascular endothelium both, at steady state 
and during inflammation, and also mediate the re-
moval of damaged endothelial cells from the vas-
culature. In addition, they also secrete large 
amounts of anti-inflammatory and wound healing 
factors such as IL-1R antagonist, IL10 receptor, 
apolipoproteins apoA and apoE, and C-X-C motif 
chemokine ligand 16 (CXCL16) (30). Nonclassical 
monocytes scavenge and accumulate lipopro-
teins, including the most proatherogenic oxidized 
lipoproteins, from the vessel wall. Even more im-
portant, their number increases in response to the 
increased concentration of cardiovascular risk fac-
tors, in particular the OxPLs (31). In the absence of 
NCMs, the number of pro-inflammatory mono-
cytes and subsequently the macrophages in-
crease, which leads to faster progression of the 
atherosclerosis (32).

Macrophages

After entering the vessel wall, monocytes can dif-
ferentiate into macrophages. Depending on the 
balance between their pro-inflammatory or anti-
inflammatory properties, macrophages are classi-
fied as M1 macrophages or M2 macrophages, re-
spectively. Even though such a classification seems 
to be oversimplified, it helps us to define the char-
acteristics of the macrophages, which can vary 
continuously between both endpoints, i.e. the M1 
and M2 phenotypes. Having said that the pheno-
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type of the macrophages is also highly dependent 
on the influences from their microenvironment. 
Therefore, the macrophages are most commonly 
referred as M1- or M2-like macrophages, more ac-
curately reflecting their heterogeneity (33). The M1 
macrophages substantially express CD86 and 
CD80 along with major histocompatibility com-
plex class II (MHC II) on their surface, which ena-
bles the antigen presentation and subsequent ac-
tivation of the T cells. Interferon (INF)-γ, TNF-α and 
LPS are the most common activators that direct 
the polarization of the naïve (M0) to M1-like mac-
rophages. Upon their polarization, M1-like mac-
rophages secrete larger amounts of TNF-α, IL-1β, 
IL-6, IL-12, IL-23 and ROS (34). On the other hand, 
the most common activators of M2-like mac-
rophages are IL-4, IL-10 and IL-13. The M2-like mac-
rophages secrete larger amounts of IL-1R antago-
nist, IL-10, transforming growth factor β (TGF-β), as 
well as other cytokines and chemokines (35).

Monocytes and macrophages in the 
initiation of atherosclerosis

Endothelial dysfunction is an early indicator of 
atherosclerosis, a systemic vascular disease associ-
ated with reduced synthesis of nitric oxide, which 
participates in arterial dilation. Endothelial dys-
function is a merit indicator of the progression of 
the atherosclerosis and the risk of coronary events 
(36). Impaired endothelial function is not only pre-
sent in patients with evident cardiovascular dis-
ease, it also shows in apparently healthy individu-
als with existing risk factors (37,38). Inflammatory 
cells, including monocytes and monocyte-derived 
macrophages, are extremely important for the ini-
tiation of the endothelial dysfunction. With the 
help of the cell-surface proteins, i.e. selectins, 
monocytes bind weakly and reversibly to cy-
tokine-activated endothelial cells (ECs). The ECs 
are activated with the inflammatory cytokines, in 
particularly with TNF-α, IL-1β and IL-6 (39). This ac-
tivation induces the expression of the adhesion 
molecules such as E- and P-selectin, intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell-
adhesion molecule 1 (VCAM-1) that participate in 
monocyte migration (40). The adhesion of mono-

cytes and monocyte-derived macrophages is fol-
lowed by their polarization to one of the subtypes 
of monocytes or monocyte-derived macrophages 
and their migration into the subendothelial layer 
(41). 

One of the most important risk factors, which de-
cisively affects the direction of the polarization of 
the monocytes and macrophages, is hypercholes-
terolemia, in particular an increased concentration 
of the LDL cholesterol. Escate et al. found that ath-
erogenic concentrations of the LDL cholesterol 
significantly shorten the time needed for differen-
tiation of the monocytes adhered to ECs into mac-
rophage-like cells (11). This influences both, the 
morphology of the monocytes and the level of 
their expression of surface marker CD14. The ex-
pression of CD14 was shown to be significantly re-
duced when monocytes are exposed to athero-
genic concentrations of LDL cholesterol in com-
parison with placebo. An increased concentration 
of LDL cholesterol does not only accelerate the 
polarization of monocytes towards proinflamma-
tory or proatherogenic phenotype, but also in-
creases the production of monocytes in the bone 
marrow (42). Interestingly, the concentration of 
LDL cholesterol was not related to the number of 
leukocytes, but only to the number of monocytes 
and granulocytes, independently of the concen-
tration of C-reactive protein (CRP) (42). Compared 
to the patients with normal LDL cholesterol con-
centrations, Bekkering et al. showed higher ex-
pression of CCR2 on monocytes from untreated fa-
miliar hypercholesterolemia (FH) patients that per-
sists even after treatment with statins and propro-
tein convertase subtilisin/kexin type 9 (PCSK9) in-
hibitors and ezetimibe if required (43). The reason 
for this is persistent hyper responsiveness of the 
circulating monocytes or so-called “trained immu-
nity” (43). Given that monocytes have a life span of 
several hours to several days, while the treatment 
in this study lasted for 12 weeks, the authors sus-
pect the reprogramming of the progenitor cells in 
the bone marrow under the influence of an in-
creased concentration of the LDL cholesterol (43). 
Progenitor cells in the bone marrow present the 
source of the new monocytes in the peripheral cir-
culation. This was further confirmed by demon-
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strating that intensive reducing of the LDL choles-
terol below 1.8 mmol/L, does not change the gene 
expression of the markers involved in the inflam-
matory and migration process in both, monocytes 
and progenitor cells in the bone marrow (42). At 
the same time, the CCR2 expression remained un-
changed on both cell types (42). Surface marker 
CCR2 is expressed on monocytes/macrophages 
and ECs. The interaction of CCR2 with its ligand, i.e. 
chemoattractant chemokine ligand 2 (CCL2), ena-
bles the adhesion and penetration of the mono-
cytes/macrophages into the subendothelial space, 
allowing the formation of the foam cells (20). In 
the CCR2 knock out (-/-) mice, even in the presence 
of CCL2, the ability of the monocytes/macrophag-
es to adhere to ECs and migrate into the suben-
dothelial layer is significantly impaired (44).

Lipoprotein(a) is a complex plasma protein that 
consists of LDL cholesterol and apolipoprotein 
B-100 (apoB) linked to the plasminogen-like 
apolipoprotein(a) (apo(a)) via a disulphide bond. 
Lipoprotein(a) is suggested to possess several di-
vergent functions. These include proatheroscle-
rotic due to the similarity with LDL cholesterol, 
and prothrombotic effects due to similarity be-
tween apo(a) and plasminogen. On the other 
hand, the pro-inflammatory effects are mainly due 
to OxPLs activating monocytes and ECs (45). A 
substantial number of monocytes was shown to 
accumulate in the vessel wall in patients with in-
creased Lp(a) values compared to those with nor-
mal values (46). These results suggest that in-
creased values ​​of Lp(a) play an important role in 
the local inflammatory process in the vascular wall. 
However, there is no evidence from the clinical 
studies, as no drugs that specifically lower Lp(a) 
are available. Treatment with PCSK9 inhibitors low-
ers LDL cholesterol concentrations by 60% and 
Lp(a) concentrations by 20-30%, however it does 
not reduce the vessel wall inflammation in pa-
tients previously treated with statins (47). Treat-
ment with specific drugs reduces Lp(a) concentra-
tions by up to 90% and reduces the pro-inflamma-
tory state of circulating monocytes (48). Lipo
protein(a) is the main carrier of OxPL, which is one 
of the most important activators of both, the 
monocytes and the ECs. Study by van der Valk et 

al. showed more notable inflammation in the vas-
cular wall of the patients with increased Lp(a) val-
ues ​​in comparison with controls with normal Lp(a) 
values (46). They demonstrated that the uptake of 
18F-fluorodeoxyglucose, which is an accurate indi-
cator of local atherogenic inflammation, into the 
vascular wall is directly proportional to the con-
centration of Lp(a). At the same time, they showed 
that areas with greater inflammation coincide with 
an increased accumulation of the peripheral blood 
mononuclear cells. Interestingly, this was evident 
not only in the areas with ​​atherosclerotic lesions, 
but also in the apparently unaffected vessel walls 
(46). Moreover, the monocytes of patients with in-
creased Lp(a) values ​​secrete larger amounts of the 
pro-inflammatory cytokines such as IL-1, IL-6 and 
TNF-α, but on the other hand, the secretion of the 
anti-inflammatory cytokines such as IL-10, is signif-
icantly reduced. The monocytes from patients 
with increased Lp(a) values ​​have also an increased 
ability to migrate through the endothelial barrier. 
Van der Valk et al. also showed that Lp(a) contain-
ing OxPLs increases the inflammatory response of 
the monocytes from patients with normal Lp(a) 
values (46). The proinflammatory effects of apo(a) 
can be blocked by a specific antibody E06. Finally, 
the authors provide evidence on the necessity for 
OxPL mediated monocyte activation. The r-apo(a) 
that contains bound OxPL is capable of activating 
monocytes, whereas nearly identical but mutated 
r-apo(a) without the ability to bind OxPL, does not 
possess the monocyte activation properties. To 
summarize, these data indicate that the OxPLs car-
ried by Lp(a), are obligatory danger signals in elic-
iting the prolonged potentiation of the monocyte 
response in vitro (46).

An increased concentration of Lp(a) is also associ-
ated with an increased number of specific sub-
types of monocytes, in particular those with the 
pro-inflammatory role in the atherosclerosis pro-
cess. In a cohort of 90 patients with stable coro-
nary disease, Khrystiuk et al. showed that patients 
with increased Lp(a) values ​​had a significantly 
higher proportion of IMs compared to patients 
with normal values (49). More importantly, the Ox-
PLs/apoB ratio was increased in patients with in-
creased Lp(a) values, underpinning the pro-inflam-
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matory role of Lp(a). Additionally, in the group 
with increased Lp(a) values, the concentration of 
CRP and IL-6 was also higher. Similar to LDL cho-
lesterol, oxidized form of Lp(a), i.e. OxLp(a) is con-
sidered to be even more atherogenic than its na-
tive form. Namely, OxLp(a) increases the synthesis 
of ROS through various signalling pathways and 
thus increases the permeability of ECs (50). In pa-
tients with type II diabetes, endothelial function 
was more impaired in those with elevated OxLp(a)/
Lp(a) ratio (51). Not only functional but also mor-
phological changes of the endothelium are associ-
ated with the concentration of OxLp(a) rather than 
with its native form, i.e. Lp(a) (52). 

An increased concentration of Lp(a) does not show 
proatherogenic effects only on monocytes/mac-
rophages, but also on ECs. These cells present the 
last barrier that monocytes/macrophages have to 
overcome to move into the subendothelial space. 
Lp(a) triggers pro-inflammatory response of ECs, 
which begin to release larger amounts of inflam-
matory cytokines, in particular IL-6 and IL-8. At the 
same time, the increased expression of the adhe-
sion molecules such as ICAM-1, E-selectin and 
CCR2, strongly increases the transendothelial mi-
gration of monocytes (53). The apo(a) part, which 
also contains OxPLs, is responsible for these ef-
fects. The expression of the aforementioned cy-
tokines and selectins increased in both, human 
umbilical vein ECs, as well as in coronary artery ECs 
under the influence of Lp(a) or apo(a) stimulation 
(54,55). Moreover, the increased release of the ad-
hesion molecules from ECs was shown to be de-
pendent on the Lp(a) concentration and the expo-
sure time (54,55). Not only does the increased con-
centration of Lp(a) and in particular apo(a) trigger 
the expression of cytokines, selectins and ROS, it 
does cause changes in the cytoskeleton of the ECs 
as well. These changes lead to greater permeabili-
ty of the ECs and thus facilitate the migration of 
the monocytes/macrophages into the suben-
dothelial space (56). Apolipoprotein(a), through its 
strong lysine-binding site in KIV(10’), mediates the 
increased contraction of the ECs and permeability 
via a Rho/Rho kinase/MYPT1-dependent pathway 
(56).

Monocytes and macrophages in the 
progression of atherosclerosis

After monocytes/macrophages penetrate into the 
subendothelial space, they accumulate lipopro-
teins and turn into foam cells, transforming func-
tional changes of the endothelium into morpho-
logical. Foam cells are involved in the formation of 
the atherosclerotic plaque, its growth and, in case 
of its rupture, in the occurrence of an acute cardio-
vascular event. The most important risk factor for 
the formation of foam cells is an increased concen-
tration of lipoproteins, in particular LDL cholester-
ol and Lp(a) (57,58). The formation of the foam cells 
results with interweaving of the three processes: 
lipid uptake, lipid efflux and cholesterol esterifica-
tion. Increased accumulation of the lipoproteins 
and cholesterol esters in macrophages suggests 
that lipid uptake and cholesterol esterification 
dominate cholesterol efflux (59). 

The most important pathway for cholesterol efflux 
is provided by the scavenger receptors (SRs), 
among which scavenger receptor A (SR-A) and 
CD36 stand out, as they contribute between 75 
and 90% of the uptake of the modified lipoproteins 
(60). Cholesterol efflux from the foam cells occurs 
with diffusion and with the help of various trans-
port systems. Under normal circumstances, diffu-
sion is the major contributor to lipoprotein efflux, 
while in the case of the increased lipoprotein con-
centration, the main part of the lipoprotein efflux 
happens through SR class B type 1 (SR-B1), ATP 
binding cassette transporter A-1 (ABCA1) and ATP-
binding cassette sub-family G member 1 (ABCG1) 
(61). Cholesterol from the foam cells can be trans-
ferred by HDL cholesterol or apolipoprotein A1 
(apoA1), presenting the first step in reverse choles-
terol transport and one of the possible mecha-
nisms for the atheroprotective role of the HDL cho-
lesterol (62). Esterification is the most important 
process for storing cholesterol in all cells, including 
in the foam cells that form the atherosclerotic le-
sions (63). Acyl-coenzyme A cholesterol acyltrans-
ferase (ACAT) is an enzyme, responsible for choles-
terol esterification in the macrophages. Its inhibi-
tion in mice reduces foam cell formation and ath-
erosclerosis progression, but has no effect on ath-
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erosclerosis progression in carotid and coronary 
arteries in patients (64). Similar to OxLp(a), OxLDL 
cholesterol is even more atherogenic than its na-
tive form. This was demonstrated by Ehara et al. 
who compared the concentration of OxLDL choles-
terol in patients with acute coronary syndrome, un-
stable and stable angina pectoris and control 
group (65). They showed that the concentration of 
OxLDL cholesterol is related to the severity of the 
coronary atherosclerosis. This association was inde-
pendent of other risk factors, including LDL choles-
terol concentrations. More importantly, the con-
centration of OxLDL cholesterol in atherectomy 
specimens was significantly higher in patients with 
unstable angina pectoris compared to the patients 
with stable coronary disease. In order to prove the 
connection between the OxLDL cholesterol and 
the foam cells or macrophages, they also com-
pared the surface area of ​​OxLDL positive mac-
rophages between these groups of patients and 
showed it was significantly higher in patients with 
unstable angina pectoris. The majority of the Ox-
LDL cholesterol is absorbed into macrophages via 
the lectin-like oxidized low-density lipoprotein re-
ceptor-1 (LOX-1). Low-density lipoprotein recep-
tor-1 is present on the surface of macrophages, ECs 
and smooth muscle cells, suggesting the involve-
ment of the OxLDL in all phases of the atheroscle-
rotic process – from endothelial dysfunction to 
rupture of the atherosclerotic plaque and the re-
sulting acute cardiovascular event (66). Further-
more, OxLDL cholesterol can trigger arterial throm-
bosis by activating platelets adhesion and reduc-
ing the fibrinolytic capacity of ECs (67). Arterial 
thrombosis is primarily associated with the rupture 
of the atherosclerotic plaque, and the release of 
large amounts of TF (68). Exposure of TF to blood 
initiates the extrinsic clotting cascade, and is con-
sidered to be a major regulator of coagulation (69). 

Patients with FH, who in addition to extremely in-
creased LDL cholesterol values, also have in-
creased Lp(a) values, have a higher risk of an acute 
coronary event compared to FH patients with nor-
mal Lp(a) values (70). Increased values ​​of Lp(a) are 
associated with the composition of the atheroscle-
rotic plaque. In patients with acute coronary syn-
drome requiring percutaneous coronary interven-

tion optical coherence tomography of culprit le-
sion showed that fibrosus cap thickness was signif-
icantly smaller in those with increased Lp(a) con-
centrations compared to those with normal Lp(a) 
concentrations (71). In patients with symptomatic 
carotid atherosclerosis, increased Lp(a) concentra-
tion was associated with lipid-rich necrotic core in-
dependently of other risk factors, including LDL 
cholesterol concentration (72). 

Long-term, i.e. at least 10 years, prospective re-
search showed that the progression of both, carot-
id and coronary atherosclerosis is faster in patients 
with higher ​​than in patients with lower Lp(a) con-
centrations (73,74). In patients with higher Lp(a) 
concentrations, the lipid-rich necrotic core signifi-
cantly increases and the fibrosus cap thickness de-
creases, which is associated with increased ten-
dency for rupture and a higher probability of arte-
rial thrombosis at the site of the atherosclerotic 
plaque rupture. The increase in lipid-rich necrotic 
core is most likely related to the pro-inflammatory 
properties of Lp(a). 

Freshly isolated monocytes from patients with ele-
vated Lp(a) concentrations ​​show three times higher 
transendothelial migration capacity compared to 
monocytes from control patients (46). At the same 
time, their monocytes possess significantly more 
scavenger receptors CD36 and SR-A on their sur-
face, which also contributes to significantly higher 
uptake of the lipoproteins and faster growth of the 
foam cells. At the same time, these monocytes se-
crete larger quantities of the pro-inflammatory cy-
tokines, for example IL-6, TNF-α and IL-1β, and sig-
nificantly smaller amounts of the anti-inflammato-
ry cytokine IL-10. This creates a vicious circle that 
contributes to a faster formation of more vulnera-
ble atherosclerotic plaques. All these processes are 
directly related to higher Lp(a) concentrations (46). 
As already mentioned, the pro-inflammatory ac-
tion of Lp(a) is largely due to OxPLs. Several studies 
involving more than 30,000 individuals, found that 
the concentration of Lp(a) is related to the OxPLs/
apoB ratio and inversely depends on the size of the 
apo(a) isoform (75,76). The OxPLs/apoB ratio proved 
to be a predictive factor for future coronary events 
independent of other risk factors except of Lp(a) 
concentration (77). Oxidized phospholipids are rap-



https://doi.org/10.11613/BM.2025.030503	 Biochem Med (Zagreb) 2025;35(3):030503 

		  9

Ugovšek S. et al.	 Influence of lipoproteins on monocytes and macrophages

idly transferred to Lp(a), and become predominant-
ly associated with Lp(a) compared to other apoB-
containing lipoproteins, despite the particle num-
ber of Lp(a) in plasma being generally much lower 
than that of the LDL cholesterol (78). This may also 
explain why Lp(a) is so much more atherogenic 
than the LDL cholesterol (79).

Upon rupture of an atherosclerotic plaque with 
many lipid-rich necrotic cores, a large amount of 
TF is released, which is stored in foam cells, mono-
cytes/macrophages and smooth muscle cells. At 
the same time, a large amount of IL-6, IL-1 and 
TNF-α is released from a plaque, which further in-
creases the production of TF in all the aforemen-
tioned cells (80). 

Lipoprotein(a) participates in atherothrombosis 
through several mechanisms. As an atherogenic li-
poprotein, Lp(a) interferes with platelet aggrega-
tion, as it can bind to platelet-activating factor 
acetyl hydrolase, which degrades and inactivates 
platelet-activating factor. This results in reduced 
platelet aggregation and activation. When plasmi-
nogen is activated to plasmin by either t-PA or 
u-PA action, the resulting enzyme cleaves several 
substrates, including fibrin, resulting in dissolution 
of the thrombi through fibrinolysis. The thrombo-
genic properties of Lp(a) might be due to the ho-
mology between apo(a) and plasminogen. 
Lipoprotein(a) competes with plasminogen for 
binding sites on ECs, which inhibits fibrinolysis 
and promotes intravascular thrombosis (45). How-
ever, there is no evidence for these speculations, 
as Mendelian randomization studies were not able 
to confirm the connection between Lp(a) and ve-
nous thromboembolism (81). Namely, it turned out 
that not the entire Lp(a), but the apo(a) alone, suc-
cessfully inhibits the fibrinolytic process (82,83). 
However, this by no means excludes the role of 
Lp(a) in the development of the arterial thrombo-
sis. It rather suggests the involvement of other 
mechanisms independent of the plasminogen ac-
tivation. It was shown that Lp(a) inhibits TF path-
way inhibitor and thus accelerates the coagulation 
process (84). At the same time, it was also proved 
that an increased concentration of Lp(a) stimulates 
the formation of PAI-1 in ECs and in this way af-
fects the fibrinolytic activity (85).

Clinical utility and limitations

Lowering LDL cholesterol with statins is a well-rec-
ognized and one of the most effective strategies 
for reducing cardiovascular events (86). However, 
at least part of the statin efficacy can be also at-
tributed to their anti-inflammatory effect that is in-
dependent of their lipolytic action (87). Treatment 
with PCSK9 inhibitors in patients previously treat-
ed with statins did not further decrease the inflam-
matory parameters, however it substantially re-
duced the inflammation in the vessel wall (88). On 
the contrary, treatment with PCSK9 inhibitors sig-
nificantly reduced the concentration of the inflam-
matory parameters in statin naïve patients (89). 
Treatment with PCSK9 inhibitors decreased Lp(a) 
concentration, however only 20-40%. The study 
was not designed to examine the impact of the 
decrease in Lp(a) on the inflammation in the vessel 
wall (89). However, it is difficult to estimate how 
much of the reduction in inflammation in the vas-
cular wall is due to the lowering of LDL cholesterol, 
and how much is due to the lowering of Lp(a). Al-
though the reduction in the incidence of recurrent 
cardiovascular events in studies with PCSK9 inhibi-
tors has been shown to depend on both the re-
duction in LDL cholesterol and Lp(a) concentra-
tions (90). Of course, we cannot precisely separate 
the contribution of both. Thus, we cannot precise-
ly determine the contribution of both reductions 
in reducing inflammation in the vascular wall, 
which is not dependent on a decrease in markers 
of inflammation in the blood. Drugs that reduce 
Lp(a) by up to 90% are currently in the phase III of 
clinical trial (91). Since the inflammation in the vas-
cular wall is associated with increased Lp(a) values, 
we can anticipate that this type of treatment will 
also have an additional impact on ameliorating 
the inflammatory process in the vascular wall in 
patients with increased Lp(a) values that present a 
high risk group for future coronary events.  Fur-
thermore, it is reasonable to expect that the novel 
treatment if started very early at the beginning of 
the development of the atherosclerotic process 
would be even more effective in preventing the 
occurrence of cardiovascular events.
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Of course, our review article also has shortcom-
ings. The most important is that we probably do 
not have data from randomized trials on the im-
pact of reducing inflammation in the vascular wall 
on the incidence of cardiovascular events, and we 
probably will not have them, at least in the near 
future. Such results would require a randomized 
double-blind study that would simultaneously 
monitor the impact of reducing inflammation in 
the vascular wall and the incidence of cardiovascu-
lar events under the influence of the tested drug. 
In the case of patients with increased concentra-
tions of both LDL cholesterol and Lp(a), this would 
be much more difficult to implement. Namely, we 
would need several groups that, in addition to pla-
cebo, would receive drugs that effectively lower 
only LDL cholesterol or Lp(a), and of course their 
combination.

Conclusions

Atherosclerosis is no longer considered a passive 
process of deposition of lipids in the arterial vessel 
wall. It is an active process of interaction between 
lipoproteins, in particular the most atherogenic 
LDL cholesterol and Lp(a), and inflammatory cells, 
mainly monocytes/macrophages. The increased 
concentration of the atherogenic lipoproteins ena-

bles and accelerates the formation of the foam 
cells from monocytes/macrophages, which then 
release large quantities of inflammatory cytokines 
that stimulate the oxidation of the atherogenic li-
poproteins. Oxidized phospholipids are even more 
atherogenic and contribute to the formation of 
foam cells and the secretion of the pro-inflamma-
tory cytokines, thus creating a vicious circle. This 
vicious cycle can be interrupted by affecting the 
concentration of either OxLPs or pro-inflammatory 
cytokines, or preferably both. 
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