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Highlights

- We present a practical approach integrating multistage quality control (QC) design and run size requirements
« Twoof the 7 QCplans initially designed were implemented across all analyzers

« Only 4 individualized QC plans were required for specific parameters

Abstract

Introduction: The ISO 15189:2022 standard considers both the robustness of analytical methods and the risk of erroneous results in the quality
control plan (QCP) design. Westgard et al.’'s nomogram recommends quality control (QC) rules based on sample run size to ensure that the maximum
expected number of unreliable patient results remains below one. This study aimed to implement a standardized, risk-based QC strategy across mul-
tiple analyzers without integrated on board QC, ensuring practical quality assurance.

Material and methods: Thirty-two biochemistry parameters on Alinity ¢ systems and three on Cobas Pro systems were included. The analytical
performance of each parameter on each analyzer was assessed using sigma metric. Workload requirements were considered to determine the desi-
red run size. Based on the “sigma metric statistical QC run size nomogram” proposed by Westgard et al., a multistage bracketed QCP was designed
for each parameter. When multiple designs were available, the simplest QC rule was prioritized.

Results: Seven QCPs were initially established for 35 parameters. In the absence of automation, practical adaptations based on sigma metrics were
implemented. Additionally, to streamline management, the QCP covering the greatest number of parameters per analyzer was prioritized, which ul-
timately resulted in the adoption of only two general QCP. Only 4 individualized QCP were required to cover 10 parameters with lower sigma values.
Condlusions: This approach demonstrates the feasibility of implementing a refined QC strategy for parameters with sigma > 4 in a highly automa-
ted laboratory, ensuring consistent quality assurance and efficient resource allocation for higher-risk tests.
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Introduction

Highly automated laboratories operate in continu-
ous mode, with uninterrupted data collection en-
suring a steady flow of samples through analytical
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systems. This mode is characterized by real-time
monitoring, where sample measurements are con-
tinuously performed, providing instant data. Con-
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tinuous performance can be evaluated through a
bracketed internal quality control (IQC), in which
the results are not reported until the next sched-
uled 1QC event is passed, ensuring that only relia-
ble data are used for decision-making (1).

Proper quality control (QC) plans are essential to
ensure reliable results for clinical decision-making,
since these decisions have a direct impact on pa-
tient safety. However, despite the well-established
principle that QC strategies should be tailored to
analytical performance, many highly automated
laboratories still apply a uniform QC rule and a
fixed number of control measurements across all
parameters, without accounting for the specific
performance of each measurement procedure in
each of the available analyzers (1-4). Notably, ap-
proximately 59% of laboratories worldwide con-
tinue to use the 1, rule for all measurands, with-
out considering it to the performance characteris-
tics of individual tests (2). Moreover, QC is usually
managed with a one-stage approach, which
means that all QC events are treated equally
throughout the daily workload. Concerning this,
Westgard et al. introduced the concept of multi-
stage bracketed statistical QC combining a “start-
up” design for the initial phase of operation with a
“monitor” design to maintain quality standards
during the continuous reporting of patient test re-
sults (1). Starting the process is a critical control
point where the probability of error is high so a
more demanding QC design with a high probabil-
ity of error detection (preferably > 90%) is applied.
After the performance is assured by the “startup”
QC and testing patient samples is initiated, then a
less demanding “monitor” design with a lower
probability of false rejection (< 5%) is applied.

Analytical performance is usually evaluated using
the sigma metric; the higher the sigma, the better
the performance, and vice versa (3,5). Nevertheless,
based solely on analytical performance, the ab-
sence of errors during analysis cannot be guaran-
teed, so that erroneous patient results can be re-
ported. In this regard, the ISO 15189:2022 standard
(section 7.3.7.2.) requires considering not only the
robustness and stability of the analytical method
but also the risk of reporting erroneous results
when designing QC plans (6). Additionally, the
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Clinical and Laboratory Standards Institute (CLSI)
issued practice guidelines (C24-Ed4) to assist the
implementation of risk management within QC
plans (7).

In this regard, Parvin et al. introduced the concept
of the number of unreliable final patient results
(Nuf), referring to erroneous results that, once re-
leased, are unlikely to be identified and corrected.
Building on this, the Max E(Nuf) value represents
the maximum expected number of such unrelia-
ble results yielded between two QC events. A val-
ue of Max E(Nuf) below one indicates that, on av-
erage, fewer than one erroneous result is expect-
ed before error detection, thus ensuring accepta-
ble analytical risk. Although it assumes normally
distributed errors and consistent system perfor-
mance - conditions that may not always hold in
practice - this concept provides a standardized
method for designing QC strategies, introducing
sample run size as a key factor in QC plans (8,9).
Defining an appropriate sample run size, the de-
tection of errors is improved, thereby minimizing
the reporting of erroneous patient results. To facil-
itate practical implementation, Westgard et al. de-
veloped a sigma-metric run size nomogram,
which, based on the sample run size, recommends
the appropriate QC rules, as well as the number of
control measurements that are needed to main-
tain Max E(Nuf) below one (1).

This study is based on the hypothesis that a QC
plan integrating multistage statistical designs and
risk management can be effectively applied across
multiple analyzers in the same laboratory, leading
to a standardized and improved analytical control.
The aim of this study was to integrate this opti-
mized QC strategy in the absence of automated
QC tools in a practical and feasible way in our lab-
oratory, thus enhancing quality assurance.

Materials and methods
Materials

This study was conducted in the core laboratory of
a tertiary hospital in Catalonia, Spain. This labora-
tory is dedicated to high-throughput automated
testing and operates continuously - 24 hours a day,
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365 days a year - processing both urgent and rou-
tine analyses. It is equipped with a track system
that integrates the preanalytical, analytical, and
postanalytical phases, and employs spectrophoto-
metric and immunoassay platforms. Most tests
(more than 75%) are performed within the bio-
chemistry area, accounting for approximately
1000 orders daily.

Annually, the biochemistry area of the core labora-
tory performs more than 3,375,528 determinations
(less than 0.5% from outpatients), covering a cata-
logue of over 177 tests. The facility is equipped
with nine clinical chemistry analyzers and staffed
by 11 specialists in biochemistry.

Internal quality control data were collected over a
six-month period (September 2023 to March 2024).
The 1QC materials used included Multichem S Plus
and Multichem U (Technopath Clinical Diagnos-
tics, Ballina, Ireland), as well as PreciControl CARD,
PreciControl PCT, and PreciControl TN (Roche Di-
agnostics GmbH, Mannheim, Germany). The same
lot of IQC materials was used throughout the
study, selected based on the availability of exten-
sive historical performance data. Calibrators and
reagents also remained consistent, supported by
long shelf-life supplies.

Methods

Twenty-eight biochemistry parameters in serum
and seven in urine (U) were included in the study.
Thirty-two parameters were measured in Alinity ¢
systems (Abbott Laboratories, Chicago, USA).
Three parameters were measured in Cobas Pro
systems (Roche Diagnostics, Mannheim, Germa-
ny). Table 1 shows the distribution of the parame-
ters based on the number of analyzers in which
the measurement procedure was available.

To select an appropriate strategy, the first step was
to evaluate the analytical performance of the
measurement procedures using sigma metric.
Thus, for each parameter imprecision and analyti-
cal bias were calculated for each concentration of
the quality control levels and for each analyzer. Im-
precision was expressed as coefficient variation
(CV). Analytical bias, expressed as systematic error
(SE), was determined as SE (%) = ((Mean value - Tar-
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get value) / Target value) x100. Allowable total er-
ror (TEa) was obtained from the updated quality
specifications and was adjusted according to the
analytical performance of each measurement pro-
cedure (10-12). The most demanding TEa that en-
sured good analytical performance (sigma > 4)
was selected (13,14). Whenever specifications
based on biological variation were unavailable,
state-of-the-art specifications were adopted (15).
Allowable total error and the source of the analyti-
cal performance specifications selected are de-
tailed in Supplementary Tables 1 and 2. For each
quality control level on each analyzer, the sigma
value was calculated using the following equation:
Sigma (o) = (TEa - SE) / CV (1). Next, the mean sig-
ma value for each analyzer was estimated, provid-
ed that no measurement procedure had a sigma
value below 4 on any analyzer. As an exception, it
was accepted that at low concentrations the sigma
value could be between 3 and 4, since analytical
performance is usually poorer in these concentra-
tion ranges and, for the parameters of the study,
there are not concentration-dependent quality
specifications that allow obtaining a more reliable
sigma.

Once the analytical performance of each parame-
ter was calculated, the workload requirements
were considered to establish the appropriate run
size for each measurement procedure. First, we es-
tablished five categories considering different dai-
ly workloads and their corresponding sample run
size, understood as the number of patient samples
between two QC events, according to the model
proposed by Westgard et al. (1). To simplify the
quality control strategy, the sample run size was
defined as a quarter of the daily workload, ensur-
ing manageable monitoring. Based on the work-
load data, each parameter was assigned to one of
the following run size categories (maximum of
samples is in the brackets): A (100), B (75), C (50), D
(25), and E (12). Thereafter, for each parameter a
multistage QC plan was designed on the basis of
the “sigma metric statistical QC run size nomo-
gram” proposed by Westgard et al. (1).

The “startup” stage was designed considering a
number of patient samples greater than or equal
to the daily workload. Additionally, the selected
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TasLE 1. Distribution of measurement procedures across the analyzers in the laboratory

One analyzer

Two analyzers

Three analyzers

Four analyzers

Amylase
Creatinine U
Albumin U Direct B.|I|rub|n
Calcium U Potassium U
NT-proBNP
Glucose U BNF
Procalcitonin
HDL ‘
Phosphorus U Sodium U
P Troponin T
Urea U
Uric Acid

Albumin
AST AP
Chloride ALT
Cholesterol Calcium
CK Creatinine
LD GGT
Magnesium Glucose
Potassium CRP
Sodium Total Bilirubin
Triglyceride Total Protein
Urea

HDL - high density lipoprotein. AP - alkaline phosphatase. ALT - alanine aminotransferase. AST - aspartate aminotransferase. CK -
creatine kinase. LD - lactate dehydrogenase. GGT - gamma-glutamyl transferase. CRP - C-reactive protein. NT-proBNP - N-terminal

pro brain natriuretic peptide. U - urine.

TaBLE 2. Mean sigma values for the parameters measured on Alinity ¢ systems

G, mean
Parameter

Alinity c1 Alinity c2 Alinity ¢3 Alinity c4
Albumin >6 >6 5.74 >6
AP >6 5.26 26 5.66
ALT >6 >6 >6 >6
Amylase na 5.39 5.90 na
AST 26 na 4.38 5.52
Calcium >6 5.82 5.14 5.82
Cholesterol na 5.24 4.92 5.65
Chloride 4.14 3.31 4.63 na
CK na >6 >6 >6
Creatinine >6 5.00 5.42 5.45
Direct Bilirubin 5.15 na 5.03 na
GGT 26 4.19 26 26
Glucose 5.20 >6 >6 >6
HDL na na na 4.43
LD 3.69 na 393 5.58
Magnesium 3.39 na 4.36 4.68
CRP 5.00 5.83 5.27 5.86
Potassium 5.94 591 26 na
Sodium 3.16 3.66 3.48 na
Total Bilirubin >6 >6 >6 >6
Total Protein 5.89 4.05 3.74 5.39
Triglyceride >6 na 5.59 4.51
Urea 26 26 51 5.94
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TaBLE 2. Continued

Uric Acid na 518 4.47 na
Albumin U na >6 na na
Calcium U na >6 na na
Creatinine U >6 >6 na na
Glucose U na >6 na na
Phosphorus U na 5.23 na na
Potassium U >6 >6 na na
Sodium U >6 5.55 na na
Urea U 5.68 5.63 na na

o - sigma. AP - alkaline phosphatase. ALT - alanine aminotransferase. AST - aspartate aminotransferase. CK - creatine kinase. HDL
- high density lipoprotein. LD - lactate dehydrogenase. GGT - gamma-glutamyl transferase. CRP - C-reactive protein. U - urine. na -

parameter not available.

QC rule should have had a probability of error de-
tection (Ped) > 0.9 to ensure the detection of the
majority of analytical errors.

The “monitor” stage was designed considering a
number of patient samples greater than or equal
to the sample run size. In this case, the QC rule se-
lected should have had a probability of false rejec-
tion (Pfr) < 0.05, to ensure that quality remained
acceptable by regularly reporting results.

When multiple designs were available for a param-
eter, priority was given to the simplest rule, even if
it resulted in an increase in the number of control
measurements, as long as this increase was man-
ageable.

Results

The mean sigma values obtained for each param-
eter in each of the analyzers are shown in Tables 2
and 3, respectively. All Alinity systems showed
6-10 parameters with sigma values > 6, 5-9 param-
eters with sigma between 5 and 6, 1-5 parameters
with sigma between 4 and 5 and up to 3 parame-
ters with sigma < 4. Both Cobas Pro systems
showed 1-2 tests reaching sigma values > 6 and
1-2 parameters with sigma between 4 and 5. Based
on these performance metrics and the workload
category requirements, tailored QC plans combin-
ing “startup” and “monitor” QC rules were devel-
oped, as shown in Table 4, along with an explana-
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TasLE 3. Mean sigma values for the parameters measured in
Cobas Pro systems

0, mean
Parameter

Cobas 1 Cobas 2
NT-proBNP 497 4.21
Procalcitonin >6 491
Troponin T >6 >6

0 - sigma. NT-proBNP - N-terminal pro brain natriuretic peptide.

TaBLE 4. Quality control plans developed according to the “sig-
ma metric statistical QC run size nomogram”

QCplan “Startup” QC rule “Monitor” QC rule
1 1,5, N1 15 N1
2 1, N2 1, N1
3 1,,N1 15 N1
4 MR N4 13, N2
5 1,,N4 1,5, N1
6 MR N4 1, N4
7 1,,N4 1, N1

QC - quality control. N - number of quality control
measurements. MR N4 represents a 1,./2, /R, /4, multirule
with 4 control measurements per QC event. 1, Nlisa 1, .
single rule with 1 control per QC event. 15, N2 is a 15, single
rule with 2 control measurements per QC event. 1,, N1 is
a 1,, single rule with 1 control per QC event; 1, N4 is a 1,
single-rule procedure with 4 control measurements per QC
event. 1, N1 is a 15, single rule with 1 control measurement
per QC event.

Biochem Med (Zagreb) 2025,;35(3):030704
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Category C parameter with a 5-Sigma level

A. Sigma-metric SQC run size nomogram
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FiGure 1. Application of Westgard nomogram: example for a category C parameter with 5-Sigma level. A and B illustrate the “start-
up” phase: (A) Intersection of workload (200 samples, Category C) and sigma determines the QC rule. (B) The power function graph
confirms that this rule, at a sigma level of 5, achieves Ped > 90%. C and D illustrate the “monitor” phase: (C) Intersection of sample run
size (50 samples, Category C) and sigma determines the QC rule. (D) The power function graph confirms that this rule, at a sigma level
of 5, achieves Pfr < 5%. Adapted with permission from (1). Ped - probability of error detection. Pfr - probability of false rejection. QC -

quality control. SE - systematic error. o - sigma.

tion of the selected QC rules. Figure 1 illustrates
how these QC plans were selected, using as an ex-
ample of Category C parameter with a sigma value
of 5. It outlines the development of appropriate
QC rules for both the “startup” and “monitor”
phases using the Westgard nomogram, and their
validation through power function graphs to en-
sure compliance with predefined Ped and Pfr

Biochem Med (Zagreb) 2025;35(3):030704

thresholds. Tables 5 and 6 illustrate the QC plan
obtained for each parameter and analyzer, along
with their appropriate workload management.

To demonstrate the feasibility of implementing QC
plans integrating multistage designs and risk-
based criteria across multiple analyzers, several
practical adjustments were necessary in our set-
ting due to the absence of automated tools. In the
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TasLE 5. Quality control plans for the parameters measured in Alinity ¢ systems

Parameter Alinity c1 Alinity c2 Alinity ¢3 Alinity c4
QCP Category QCP Category QCP Category QCP Category

Albumin 1 B 1 C 1 C 1 D
AP 1 B 1 C 1 C 1 D
ALT 1 B 1 B 1 C 1 D
Amylase na na 1 D 1 E na na
AST 1 C na na 4 C 1

Calcium 1 B 1 C 3 C 1

Cholesterol na na 1 C 3 E 1

Chloride 4 E - E 7 E na na
CK na na 1 D 1 E 1

Creatinine 1 A 5 B 1 C 1 C
D Bil 2 E na na 3 E na na
GGT 1 B 6 C 1 C 1 D
Glucose 1 B 1 1 C 1 D
HDL na na na na na na 4 D
LD - C na na - E 1 E
Magnesium - C na na 4 E 7 E
CRP 3 C 1 C 2 C 1 D
Potassium 1 B 1 B 1 A na na
Sodium - B - B - A na na
T Bil 1 B 1 C 1 C 1 D
Total Protein 1 C 6 C - C 2 D
Triglyceride 1 C na na 1 E 4

Urea 1 A 1 A 3 C 1 C
Uric Acid na na 2 E 7 E na na
Albumin U na na 1 D na na na na
Calcium U na na 1 E na na na na
Creatinine U 1 E 1 E na na na na
Glucose U na na 1 E na na na na
Phos U na na 1 E na na na na
Potassium U 1 E 1 E na na na na
Sodium U 1 E 1 E na na na na
Urea U 1 E 1 E na na na na

AP - alkaline phosphatase. ALT - alanine aminotransferase. AST - aspartate aminotransferase. CK - creatine kinase. D Bil - direct
bilirubin. HDL - high density lipoprotein. LD - lactate dehydrogenase. GGT - gamma-glutamyl transferase. CRP - C reactive protein.
Phos — phosphorus. QCP - quality control plan. T Bil - total bilirubin. U - urine. na - not available. “-“ - sigma < 4.
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TasLE 6. Quality control plans for the parameters measured in
Cobas Pro systems

Cobas 1 Cobas 2
Parameter
QCP Category QCP Category
NT-proBNP 3 D 4 D
Procalcitonin 1 E 3 E
Troponin T 1 D 1 D

QCP - quality control plan. NT-proBNP - N-terminal pro brain
natriuretic peptide.

“startup” phase, although the 1, N1 rule could
have been applied to parameters with sigma val-
ues > 6 and daily workloads below 350, a unified
approach was preferred (16). Therefore, the 1, . N1
rule was selected for all such parameters, balanc-
ing simplicity and performance. During the “moni-
tor” phase, the selection of QC rules was primarily
based on the sample run size, followed by evalua-
tion of the Pfr. The 1, N1 rule was excluded from
this stage, given its relatively high Pfr (about 0.05),
which may compromise routine efficiency. In both
phases, when multiple rule options were available,
the simplest rule achieving Ped > 0.9 was consist-
ently prioritized. These decisions, summarized in
Table 7, illustrate how harmonized, analyzer-span-
ning QC strategies can be constructed in a practi-
cal and scalable manner while maintaining analyt-
ical rigor. To further simplify implementation

TasLE 7. Framework for selecting a quality control plan based
on the sigma level of measurement procedures

Sigma " ” " . ”
level Startup” stage Monitor” stage
QC rules could be
>6 1, .. N1 selected based on the

2.5s i’ N
desired run size*

QC rules could be
5-6 selected based on the
desired run size*

QC rules could be
selected based on the
desired run size*

QC rules could be

4-5 MR N4 selected based on the
desired run size*
<4 nat nat

*QC rule could be selected based on the “sigma metric
statistical QC run size nomogram” proposed by Westgard
et al (1). "No QC strategy is available, as no “startup” QC
rule achieves a Ped > 0.9. Improvement of the analytical
performance is needed. QC - quality control. N - number of
quality control measurements per QC event.

across the six analyzers, and in line with the pro-
posed harmonized QC strategy, the QC plan cover-
ing the greatest number of parameters per analyz-
er was selected. This resulted in the adoption of
only two QC plans (QCP 2 and 3) out of the seven
initially defined. As shown in Table 8, only ten pa-
rameters with lower sigma values required individ-
ualized QC plans due to their need for stricter QC
rules. These ten parameters were effectively cov-
ered by four individual QCPs.

TasLe 8. Quality control plan implemented by analyzer and individualized quality control plans for specific parameters

Analyzer QcCP Individualized QCP, parameter
Alinity1 c1 3 4, chloride

Alinity1 c2 2 5, creatinine; 6, GGT and total protein
Alinity2 c3 3 4, AST and magnesium; 7, chloride and uric acid
Alinity3 c4 2 7, magnesium; 4, triglyceride and HDL
Cobas Prot 3 -

Cobas Pro2 3 4, NT-proBNP

AST - aspartate aminotransferase. HDL - high density lipoprotein. NT-proBNP - N-terminal pro brain natriuretic peptide. QCP -

quality control plan.

Biochem Med (Zagreb) 2025;35(3):030704
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Discussion

Multistage bracketed statistical QC strategies,
which integrate analytical performance metrics
and workload requirements, offer a promising ap-
proach to optimize patient safety in clinical labora-
tories. This strategy allowed us to tailor QC plans,
to achieve a balance between quality assurance
and operational efficiency.

Several general concepts helped us implement
the new QC strategies. First, to control a measure-
ment procedure with a sigma value > 6, simple QC
rules with Ped > 0.9 could be employed, resulting
in Max E(Nuf) values from 0.3-0.4, which means
that 250-333 patient samples could be analyzed
between two QC events, ensuring that no more
than one erroneous result would be reported (16).
Second, for measurement procedures with sigma
values between 5 and 6, QC rules can be selected
based on the desired run size, while maintaining
an acceptable Max E(Nuf). For measurement pro-
cedures with sigma values between 4 and 5,
achieving an acceptable Max E(Nuf) requires ap-
plying more complex QC rules, such as multiple
control rules 1,./2, /R, /4, (MR N4), in the “startup”
stage to reach an appropriate Ped, regardless of
the desired run size. Finally, for sigma values be-
low 4, no “startup” QC rule achieves a Ped > 0.9,
indicating poor performance and the need for im-
provements to ensure the quality of these meas-
urement procedures to achieve a Max E(Nuf) <1
(1,17). These principles formed the basis for the se-
lection and standardization of QC plans across the
analyzers.

Some of the advantages of such a QC strategy are
related to its scalability and long-term efficiency.
While the initial implementation effort increases
with the number of analytes and analytical plat-
forms, once established, the addition of new pa-
rameters or analyzers requires considerably less
effort. This is because key components of the strat-
egy, such as the QC plan categories derived from a
risk-based classification model, along with the QC
rule selection criteria, are already standardized
and can be systematically applied across different
systems (1). Moreover, free QC calculators available
on the Westgard website offer a user-friendly tool

https://doi.org/10.11613/BM.2025.030704

to facilitate the application of risk-based QC rule
selection and performance evaluation (18). Al-
though these calculators were not used in our
study, they may help other laboratories in integrat-
ing risk-based QC strategies. Additionally, by allo-
cating more demanding QC plans only to parame-
ters with lower sigma values, the strategy ensures
optimal use of resources without compromising
analytical quality (1,19).

Despite these advantages, several limitations must
be acknowledged. The lack of automated tools
constituted the major limitation for the implemen-
tation of this QC strategy in our laboratory. Auto-
mated measurement of on-board controls based
on the category assigned at each parameter and
analyzer, along with the management of rules for
accepting or rejecting control results, would en-
able us an individualized management of each pa-
rameter (20). Performing these functions manually
requires specialized laboratory personnel and en-
tails considerable effort. In our setting, we ad-
dressed this in Alinity systems by configuring the
middleware AlinlQ AMS (Abbott Laboratories, Chi-
cago, USA) to withhold sample results once the
predefined number of measurements per catego-
ry was performed for each parameter and analyz-
er. These rules enabled us to lock the correspond-
ing test until the required QC plan was completed,
ensuring compliance with established QC plan.
Furthermore, as our hospital does not provide pri-
mary care services, sample flow remains generally
consistent, with predictable peak times through-
out the day, facilitating the timely execution of QC
procedures. For the Cobas Pro systems, where no
middleware is available, this procedure was per-
formed manually by laboratory staff according to
the same predefined rules.

While the lack of automation was a primary con-
straint, additional factors may impact the broader
applicability of our findings. Although the sigma
metric remains a useful tool for QC design, its reli-
ability depends on the veracity of imprecision and
bias estimates, that changes constantly, as well as,
on the appropriate selection of the TEa. These
variables can significantly affect sigma values and,
consequently, influence the selection of QC plan
(19, 21).

Biochem Med (Zagreb) 2025,;35(3):030704

9



Costa-Pallaruelo M. et al.

Integrating multistage QC designs and risk management

Other authors have demonstrated the practical
applicability of a multistage bracketed statistical
QC model in their laboratories. Nevertheless, these
studies were predominantly focused on the opti-
mization of the QC plan for an isolated parameter
or for a set of parameters within a single analyzer
(22,23). To date, no study has been published
showing the implementation of this QC strategy
across multiple parameters and the several analyt-
ical systems of a highly automated laboratory.

Future work should focus on the development or
adaptation of middleware tools that support dy-
namic QC plan assignment based on real-time
performance metrics. Moreover, integrating eco-
nomic evaluations, such as cost-effectiveness or
cost-benefit analyses, into the model could
strengthen its practical value and support deci-
sion-making in resource-limited settings. Finally,
the implementation of this approach in similar lab-
oratories with diverse analytical platforms and op-
erational context would provide valuable informa-
tion to confirm the model’s applicability and guide
further refinement.

This pragmatic approach demonstrates the feasi-
bility of implementing a refined QC strategy in a
highly automated laboratory for all parameters
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